Glycine analysis is important in research fields such as physiology and healthcare because the concentration of glycine in human plasma has been reported to change with various disorders. Glycine oxidase from Bacillus subtilis (GlyOX) is useful for quantitative analysis of glycine. However, GlyOX is not sufficiently stable for use in physiology-based research or clinical settings. In this report, site-directed mutagenesis was used to engineer a GlyOX mutant suitable for glycine analysis. The GlyOX triple-mutant (T42 A/C245 S/L301V) retained most of its enzymatic activity during storage for over a year at 4 °C. A colorimetric enzyme analysis protocol was established using the GlyOX triple-mutant to determine glycine concentrations in human plasma. The analysis showed high accuracy (-5.4 to 3.5% relative errors when compared with the results from an amino acid analyzer, and 96.0-98.7% recoveries) and high precision (<4% between-run variation). Sample pretreatments of deproteinization and derivatization were not required. Therefore, this novel enzymatic analysis offers an effective and useful method for determining glycine concentrations in physiology related research and the healthcare field.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ab.2019.113447DOI Listing

Publication Analysis

Top Keywords

glycine analysis
12
glycine
8
glycine oxidase
8
human plasma
8
glyox triple-mutant
8
analysis
6
glyox
5
development rapid
4
rapid simple
4
simple glycine
4

Similar Publications

Identification of Butyrylcholinesterase-Derived Small Molecule Peptides Indicative of Novichok Nerve Agent Exposures.

Chem Res Toxicol

January 2025

Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, 4770 Buford Highway NE, Atlanta, Georgia 30341, United States.

Novichok nerve agents, such as A-230, A-232, and A-234, were classified as Schedule 1 chemicals under the Chemical Weapons Convention (CWC) by the Organisation for the Prohibition of Chemical Weapons (OPCW) following poisoning incidents in 2018. As a result, the production, storage, and use of these chemicals are strictly prohibited by CWC signatory nations. The identification of biomarkers indicating Novichok exposure in humans is crucial for prompt detection and response to potential incidents involving these banned chemical weapons.

View Article and Find Full Text PDF

Sarcopenia (SP), an age-associated condition marked by muscle weakness and loss has been strongly connected with metabolic factors according to substantial evidence. Nevertheless, the causal correlation between SP and serum metabolites, and the biological signaling pathways involved, is still not well understood. We performed a bidirectional two-sample Mendelian randomization (MR) analysis to examine the causal relationships between 1091 levels and 309 ratios of metabolites with SP traits, alongside investigating the relevant biological signaling pathways.

View Article and Find Full Text PDF

In depth profiling of dihydrolipoamide dehydrogenase deficiency in primary patients fibroblasts reveals metabolic reprogramming secondary to mitochondrial dysfunction.

Mol Genet Metab Rep

March 2025

The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty for Life Sciences, Sagol School of Neurosciences, Tel Aviv University, 6997801 Tel Aviv, Israel.

Dihydrolipoamide dehydrogenase (DLD) deficiency is an autosomal recessive disorder characterized by a functional disruption in several critical mitochondrial enzyme complexes, including pyruvate dehydrogenase and α-ketoglutarate dehydrogenase. Despite DLD's pivotal role in cellular energy metabolism, detailed molecular and metabolic consequences of DLD deficiency (DLDD) remain poorly understood. This study represents the first in-depth multi-omics analysis, specifically metabolomic and transcriptomic, of fibroblasts derived from a DLD-deficient patient compound heterozygous for a common Ashkenazi Jewish variant (c.

View Article and Find Full Text PDF

Boosting Amino Acid Synthesis with WO Sub-Nanoclusters.

Adv Mater

January 2025

College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, P. R. China.

The conversion of nitrate-rich wastewater and biomass-derived blocks into high-value products using renewably generated electricity is a promising approach to modulate the artificial carbon and nitrogen cycle. Here, a new synthetic strategy of WO sub-nanoclusters is reported and supported on carbon materials as novel efficient electrocatalysts for nitrate reduction and its coupling with α-keto acids. In acidic solutions, the NH-NHOH selectivity can also optimized by adjusting the potential, with the total FE exceeding 80% over a wide potential range.

View Article and Find Full Text PDF

In the present study, we identified 22 significant SNPs, eight stable QTLs and 17 potential candidate genes associated with 100-seed weight in soybean. Soybean is an economically important crop that is rich in seed oil and protein. The 100-seed weight (HSW) is a crucial yield contributing trait.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!