Headache is a common complaint after mild traumatic brain injury (mTBI). Changes in the CNS lipidome were previously associated with acrolein-induced headache in rodents. mTBI caused similar headache-like symptoms in rats; therefore, we tested the hypothesis that mTBI might likewise alter the lipidome. Using a stereotaxic impactor, rats were given either a single mTBI or a series of 4 mTBIs 48 h apart. 72 h later for single mTBI and 7 days later for repeated mTBI, the trigeminal ganglia (TG), trigeminal nucleus (TNC), and cerebellum (CER) were isolated. Using HPLC/MS/MS, ~80 lipids were measured in each tissue and compared to sham controls. mTBI drove widespread alterations in lipid levels. Single mTBI increased arachidonic acid and repeated mTBI increased prostaglandins in all 3 tissue types. mTBI affected multiple TRPV agonists, including N-arachidonoyl ethanolamine (AEA), which increased in the TNC and CER after single mTBI. After repeated mTBI, AEA increased in the TG, but decreased in the TNC. Common to all tissue types in single and repeated mTBI was an increase the AEA metabolite, N-arachidonoyl glycine, a potent activator of microglial migration. Changes in the CNS lipidome associated with mTBI likely play a role in headache and in long-term neurodegenerative effects of repeated mTBI.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-3-030-21735-8_16DOI Listing

Publication Analysis

Top Keywords

repeated mtbi
20
single mtbi
16
mtbi
15
bioactive lipids
8
mild traumatic
8
traumatic brain
8
brain injury
8
changes cns
8
cns lipidome
8
lipidome associated
8

Similar Publications

Background And Importance: Traumatic intracranial hemorrhage (tICH) after mild traumatic brain injury (mTBI) is not uncommon in the elderly. Often, these patients are admitted to the hospital for observation. The necessity of admission in the absence of clinically important intracranial injuries is however unclear.

View Article and Find Full Text PDF

The accurate, repeatable, and cost-effective quantitative characterization of mild traumatic brain injuries (mTBIs) is crucial for safeguarding the long-term health and performance of high-risk groups, including athletes, emergency responders, and military personnel. However, gaps remain in optimizing mTBI assessment methods, especially regarding the integration of neuromechanical metrics such as reaction time (RT) in predictive models. This review synthesizes existing research on the use of neuromechanical probabilistic models as tools for assessing mTBI, with an emphasis on RT's role in predictive diagnostics.

View Article and Find Full Text PDF

Objective: Older adults have an increased risk of developing persistent cognitive complaints after mild traumatic brain injury (mTBI). Yet, studies exploring which factors protect older adults with mTBI from developing such complaints are rare. It has been suggested that one such factor may be cognitive reserve (CR), but it is unknown how CR influences cognition in this patient category.

View Article and Find Full Text PDF

Chronic traumatic encephalopathy (CTE) has attracted attention due to sports-related head trauma or repetitive mild traumatic brain injury (mTBI). However, the pathology of CTE remains underexplored. Reproducible and quantitative model of CTE has yet to be established.

View Article and Find Full Text PDF

Athletes in collision sports frequently sustain repetitive head impacts (RHI), which, while not individually severe enough for a clinical mild traumatic brain injury (mTBI) diagnosis, can compromise neuronal organization by transferring mechanical energy to the brain. Although numerous studies target athletes with mTBI, there is a lack of longitudinal research on young collision sport participants, highlighting an unaddressed concern regarding cumulative RHI effects on brain microstructures. Therefore, this study aimed to investigate the microstructural changes in the brains' of high school rugby players due to repeated head impacts and to establish a correlation between clinical symptoms, cumulative effects of RHI exposure, and changes in the brain's microstructure.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!