Nanostructured quantum well and quantum dot III-V solar cells provide a pathway to implement advanced single-junction photovoltaic device designs that can capture energy typically lost in traditional solar cells. To realize such high-efficiency single-junction devices, nanostructured device designs must be developed that maximize the open circuit voltage by minimizing both non-radiative and radiative components of the diode dark current. In this work, a study of the impact of barrier thickness in strained multiple quantum well solar cell structures suggests that apparent radiative efficiency is suppressed, and the collection efficiency is enhanced, at a quantum well barrier thickness of 4 nm or less. The observed changes in measured infrared external quantum efficiency and relative luminescence intensity in these thin barrier structures is attributed to increased wavefunction coupling and enhanced carrier transport across the quantum well region typically associated with the formation of a superlattice under a built-in field. In describing these effects, a high efficiency (>26% AM1.5) single-junction quantum well solar cell is demonstrated in a device structure employing both a strained superlattice and a heterojunction emitter.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6765021PMC
http://dx.doi.org/10.1038/s41598-019-50321-xDOI Listing

Publication Analysis

Top Keywords

quantum well
24
well solar
12
solar cells
12
quantum
8
device designs
8
barrier thickness
8
solar cell
8
well
6
solar
5
design demonstration
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!