High-frame-rate 3-D ultrasound imaging technology combined with super-resolution processing method can visualize 3-D microvascular structures by overcoming the diffraction-limited resolution in every spatial direction. However, 3-D super-resolution ultrasound imaging using a full 2-D array requires a system with a large number of independent channels, the design of which might be impractical due to the high cost, complexity, and volume of data produced. In this study, a 2-D sparse array was designed and fabricated with 512 elements chosen from a density-tapered 2-D spiral layout. High-frame-rate volumetric imaging was performed using two synchronized ULA-OP 256 research scanners. Volumetric images were constructed by coherently compounding nine-angle plane waves acquired at a pulse repetition frequency of 4500 Hz. Localization-based 3-D super-resolution images of two touching subwavelength tubes were generated from 6000 volumes acquired in 12 s. Finally, this work demonstrates the feasibility of 3-D super-resolution imaging and super-resolved velocity mapping using a customized 2-D sparse array transducer.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7614008PMC
http://dx.doi.org/10.1109/TUFFC.2019.2943646DOI Listing

Publication Analysis

Top Keywords

3-d super-resolution
16
ultrasound imaging
12
2-d sparse
12
sparse array
12
super-resolution ultrasound
8
3-d
6
imaging
5
2-d
5
imaging 2-d
4
array
4

Similar Publications

Objective: Super-resolution ultrasound (SRUS) imaging through localizing and tracking microbubbles, also known as ultrasound localization microscopy (ULM), can produce sub-diffraction resolution images of micro-vessels. We have recently demonstrated 3-D selective SRUS with a matrix array and phase change contrast agents (PCCAs). However, this method is limited to a small field of view (FOV) and by the complex hardware required.

View Article and Find Full Text PDF

Velocity estimation in ultrasound imaging is a technique to measure the speed and direction of blood flow. The flow velocity in small blood vessels, i.e.

View Article and Find Full Text PDF

Super-resolution ultrasound imaging using the erythrocytes (SURE) has recently been introduced. The method uses erythrocytes as targets instead of fragile microbubbles (MBs). The abundance of erythrocyte scatterers makes it possible to acquire SURE data in just a few seconds compared with several minutes in ultrasound localization microscopy (ULM) using MBs.

View Article and Find Full Text PDF

Objective: This study aimed to realise 3-D super-resolution ultrasound imaging transcutaneously with a row-column array which has far fewer independent electronic channels and a wider field of view than typical fully addressed 2-D matrix arrays. The in vivo image quality of the row-column array is generally poor, particularly when imaging non-invasively. This study aimed to develop a suite of image formation and post-processing methods to improve image quality and demonstrate the feasibility of ultrasound localisation microscopy using a row-column array, transcutaneously on a rabbit model and in a human.

View Article and Find Full Text PDF

Spectral super-resolution has attracted the attention of more researchers for obtaining hyperspectral images (HSIs) in a simpler and cheaper way. Although many convolutional neural network (CNN)-based approaches have yielded impressive results, most of them ignore the low-rank prior of HSIs resulting in huge computational and storage costs. In addition, the ability of CNN-based methods to capture the correlation of global information is limited by the receptive field.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!