AI Article Synopsis

Article Abstract

Ultrafast ultrasound imaging provides great opportunities for very high frame rate applications, such as shear wave elastography and microvascular imaging. However, ultrafast imaging with curved array transducers remains challenging in terms of element directivity and a limited field-of-view (FOV) for a fully synthetic area. In this paper, a wide FOV ultrafast curved array imaging method based on diverging wave transmissions is presented for high frame rate abdominal ultrasound applications. For this method, a theoretical model for a diverging wave solution based on a virtual point source originating from a circular line is proposed, and the FOV and element directivity are analyzed by this model. Furthermore, an integrated model for plane wave and diverging wave imaging along the location of the virtual point source is derived. The proposed method was evaluated with simulation, phantom, and in vivo studies. In the simulation and phantom studies, the image quality (i.e., spatial resolution, cystic resolution, and contrast-to-noise ratio), and effective FOV were assessed. For the in vivo study, a preliminary result from abdominal microvascular imaging, where diverging wave excitation was utilized to depict the vasculature, was also presented. In the renal cortex microvessels, the diverging wave imaging yielded a higher signal-to-clutter ratio value than the plane wave imaging, i.e., 6.35 vs. 4.26 dB, due to the wider synthetic field. These studies demonstrated that the proposed ultrafast curved array imaging technique based on diverging wave excitation allowed for an extended FOV with high spatiotemporal resolution.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TBME.2019.2942164DOI Listing

Publication Analysis

Top Keywords

diverging wave
24
curved array
16
ultrafast curved
12
array imaging
12
wave imaging
12
imaging
10
wave
9
imaging diverging
8
high frame
8
frame rate
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!