Ultrafast ultrasound imaging provides great opportunities for very high frame rate applications, such as shear wave elastography and microvascular imaging. However, ultrafast imaging with curved array transducers remains challenging in terms of element directivity and a limited field-of-view (FOV) for a fully synthetic area. In this paper, a wide FOV ultrafast curved array imaging method based on diverging wave transmissions is presented for high frame rate abdominal ultrasound applications. For this method, a theoretical model for a diverging wave solution based on a virtual point source originating from a circular line is proposed, and the FOV and element directivity are analyzed by this model. Furthermore, an integrated model for plane wave and diverging wave imaging along the location of the virtual point source is derived. The proposed method was evaluated with simulation, phantom, and in vivo studies. In the simulation and phantom studies, the image quality (i.e., spatial resolution, cystic resolution, and contrast-to-noise ratio), and effective FOV were assessed. For the in vivo study, a preliminary result from abdominal microvascular imaging, where diverging wave excitation was utilized to depict the vasculature, was also presented. In the renal cortex microvessels, the diverging wave imaging yielded a higher signal-to-clutter ratio value than the plane wave imaging, i.e., 6.35 vs. 4.26 dB, due to the wider synthetic field. These studies demonstrated that the proposed ultrafast curved array imaging technique based on diverging wave excitation allowed for an extended FOV with high spatiotemporal resolution.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TBME.2019.2942164 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!