Structural polymorphism of murine factor H protein was demonstrated by using three different methods. 1) By prolonged agarose electrophoresis and immunofixation, factor H protein was visualized in the beta region as a single, distinct protein band in freshly bled EDTA-plasmas from many laboratory and wild mice. Two variants were detected among a large number of tested strains; one, referred to as H.1, moved faster to the anodal region (type strain, BALB/c), and the other, referred to as H.2, moved more slowly to the anodal region (type strain, STR). The F1 hybrid between BALB/c and STR exhibited a combining type of factor H protein, which was observed in each parent. 2) Two-dimensional peptide mapping analysis was carried out with tryptic peptides of these two factor H allotypes. Almost all of the spots in the maps of tryptic peptides were common to both allotypes. However, three distinct spots among the 57 spots detected in the map of tryptic peptides of the H.1 allotypes were not detected in that of H.2 allotype, whereas two spots among the 56 spots in the map of H.2 allotype were unique for this allotype. The F1 hybrid between BALB/c and STR showed a combining type of the map of parent. 3) Alloantisera against each of H allotypes were successfully produced in BALB/c or BALB/c-H.2 (a congenic strain with H.2 allotype) by repeated injection of each purified factor H protein either from the BALB/c or the STR strain. These findings indicated that the observed variants of factor H represent antigenically and structurally distinguishable allotypes. The allotypes of murine factor H protein are controlled by a single codominant locus located between the Hc locus and the beta 2M locus on the second chromosome of the mouse. This was shown by phenotyping the Hc locus and H locus with backcross progenies between A/J (one of strain with H.1) and MoA (one of strain with H.2). The recombination frequency between these two loci was 0.17 +/- 0.046.

Download full-text PDF

Source

Publication Analysis

Top Keywords

factor protein
20
balb/c str
12
tryptic peptides
12
structural polymorphism
8
polymorphism murine
8
factor
8
locus located
8
beta locus
8
locus second
8
second chromosome
8

Similar Publications

Identification of genetic variants of the gene in association with COPD susceptibility.

Ann Med

December 2025

Department of General Practice, Hainan affiliated Hospital of Hainan Medical University, Hainan General Hospital, Haikou, China.

Background: Although existing studies have identified some genetic loci associated with chronic obstructive pulmonary disease (COPD) susceptibility, many variants remain to be discovered. The aim of this study was to further explore the potential relationship between single nucleotide polymorphisms (SNPs) and COPD risk.

Methods: Nine hundred and ninety-six subjects were recruited (498 COPD cases and 498 healthy controls).

View Article and Find Full Text PDF

Purpose: Although mechanical injury to the cornea (e.g. chronic eye rubbing) is a known risk factor for keratoconus progression, how it contributes to loss of corneal integrity is not known.

View Article and Find Full Text PDF

Eukaryotic Initiation Factor 4 (eIF4) is a group of factors that activates mRNA for translation and recruit 43S preinitiation complex (PIC) to the mRNA 5' end, forming the 48S PIC. The eIF4 factors include mRNA 5' cap-binding protein eIF4E, ATP-dependent RNA helicase eIF4A, and scaffold protein eIF4G, which anchors eIF4A and eIF4E. Another eIF4 factor, eIF4B, stimulates the RNA helicase activity of eIF4A and facilitates mRNA recruitment.

View Article and Find Full Text PDF

ANKRD11 binding to cohesin suggests a connection between KBG syndrome and Cornelia de Lange syndrome.

Proc Natl Acad Sci U S A

January 2025

Shenzhen Key Laboratory of Biomolecular Assembling and Regulation, Department of Neuroscience, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China.

Ankyrin Repeat Domain-containing Protein 11 () is a causative gene for KBG syndrome, a significant risk factor for Cornelia de Lange syndrome (CdLS), and a highly confident autism spectrum disorder gene. Mutations of lead to developmental abnormalities in multiple organs/tissues including the brain, craniofacial and skeletal bones, and tooth structures with unknown mechanism(s). Here, we find that ANKRD11, via a short peptide fragment in its N-terminal region, binds to the cohesin complex with a high affinity, implicating why mutation can cause CdLS.

View Article and Find Full Text PDF

Light signal regulates endoreduplication and tomato fruit expansion through the SlPIF1a-SlTLFP8-SlCDKB2 module.

Proc Natl Acad Sci U S A

January 2025

Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing 100193, China.

Light serves as an energy source for cell division and expansion during fruit development. Cell expansion significantly influences fruit size and is closely linked to endoreduplication, a unique cell cycle variation characterized by DNA replication without cytokinesis. Paradoxically, under conditions of ample photosynthates, light signaling suppresses cell expansion.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!