Background: In most clinical studies older people are underrepresented compared to the demographic reality. However, risk for some severe diseases like cancer typically increase with age. Most insight into cancer treatment comes from mixed-age patient cohorts, leading to a lack of detailed understanding of cancer drug effects in the elderly population. There is growing evidence that cancer drug effects can be influenced by dehydration conditions often found in older people. Colon cancer remains the second leading cause of death by cancer in Europe. Inter- and intra-heterogeneity of tumors contribute to why some individuals do not respond to specific cancer therapies or may often suffer a relapse.
Objective: Our study applies an in vitro drug test system for simulating treatment with cytostatics of colorectal cancer in elderly patients with dehydration condition.
Methods: Two well-known colon cancer cell lines, Caco-2 and RKO, harboring defined cancer-related mutations, were step-wisely adapted from routine culture medium to a severe hyperosmotic condition (397 mOmol/kg) by adding sodium chloride to the medium. We investigated the effects of these cell culture conditions, which should mimic cellular dehydration in elderly people, on the growth characteristics of the cells. Therefore, cell proliferation was investigated by measuring population doubling times. Furthermore, we investigated how the metabolic activity of the cells was influenced by treatment with different concentrations of cyclophosphamide (CPA) under normal and hyperosmotic conditions.
Results: We found that Caco-2 and RKO cell lines have an identical cell doubling time of 23 hours in normosmotic medium. However, hyperosmotic medium lifted the doubling time of Caco-2 cells to 31 hours while that of RKO cells did not change. Despite reduced cell proliferation rates, hyperosmotic medium sensitized Caco-2 cells to treatment with 10 mM CPA for 48 hours as measured by metabolic activity assays on ATP levels.
Conclusions: The two investigated colon cancer cells lines reacted differently to hyperosmotic conditions. Only the growth of Caco-2 cells was reduced by increased osmolality. Despite this reduced growth their sensitivity to an alkylating cytostatic agent was even slightly increased. We are now in line to examine these effects in more detail and with more tumor cell lines.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3233/CH-199210 | DOI Listing |
Sci Rep
January 2025
Department of Internal Medicine, Kosin University College of Medicine, Busan, South Korea.
Colon cancer is a significant health concern, and obesity is a well-established risk factor. However, previous studies have mainly focused on assessing body weight as a risk factor for colon cancer at a specific time point. This nationwide cohort study investigated the association between body weight changes, which can fluctuate throughout an individual's lifespan, and the incidence of colon cancer using the South Korean population database provided by the National Health Insurance Service (NHIS).
View Article and Find Full Text PDFBMJ Open
January 2025
Colorectal Cancer Center, Department of General Surgery, West China Hospital of Sichuan University, Chengdu, Sichuan, China
Introduction: The standard of care for stage III colon cancer is 3 or 6 months of double-drug regimen chemotherapy following radical surgery. However, patients with positive circulating tumour DNA (ctDNA) exhibit a high risk of recurrence risk even if they receive standard adjuvant chemotherapy. The potential benefit of intensified adjuvant chemotherapy, oxaliplatin, irinotecan, leucovorin and fluoropyrimidine (FOLFOXIRI), for ctDNA-positive patients remains to be elucidated.
View Article and Find Full Text PDFBioorg Chem
December 2024
Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran. Electronic address:
In this study, novel 2-styrylquinoline derivatives possessing a planar aromatic system and a flexible side chain with an amino substituent were designed and synthesized as DNA-intercalating antitumor agents. The cytotoxic activity of the synthesized compounds was evaluated against four cancer cell lines including MCF-7 (breast cancer cells), A549 (lung epithelial cancer cells), HCT116 (colon cancer cells) and normal cell line L929 (mouse fibroblast cell line). The results displayed that the anti-cancer activity of the target quinolines is sensitive to the lipophilic nature of the C-6 and C-7 quinoline substituents.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Pesticide Chemistry, National Research Centre, Dokki, 12622, Giza, Egypt.
Targeted therapy is preferable over other therapeutics due to its limitation of drawbacks and better pharmaceutical outcomes. VEGF and its receptors have been observed to be hyper-activated in many cancer types and are considered promising targets for assigning anticancer agents. The current study is directed towards synthesis of novel antiproliferative 2-oxoindolin-3-ylidenes incorporating urea function with VEGFR-2 properties.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA 19104.
Mitochondrial DNA (mtDNA) is highly polymorphic, and host mtDNA variation has been associated with altered cancer severity. To determine the basis of this mtDNA-cancer association, we analyzed conplastic mice with the C57BL/6J (B6) nucleus but two naturally occurring mtDNA lineages, and , where mitochondria generate more oxidative phosphorylation (OXPHOS)-derived reactive oxygen species (mROS). In a cardiac transplant model, Foxp3+ T regulatory (Treg) cells supported long-term allograft survival, whereas Treg cells failed to suppress host T effector (Teff) cells, leading to acute rejection.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!