Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
During cognitive, perceptual and sensory tasks, connectivity profile changes across different regions of the brain. Variations of such connectivity patterns between different cognitive tasks can be evaluated using pairwise synchronization measures applied to electrophysiological signals, such as electroencephalography (EEG). However, connectivity-based task recognition approaches achieving viable recognition performance have been lacking from the literature. By using several synchronization measures, we identify time lags between channel pairs during different cognitive tasks. We employed mutual information, cross correntropy, cross correlation, phase locking value, cosine similarity and nonlinear interdependence measures. In the training phase, for each type of cognitive task, we identify the time lags that maximize the average synchronization between channel pairs. These lags are used to calculate pairwise synchronization values with which we construct the train and test feature vectors for recognition of the cognitive task carried out using Fisher's linear discriminant (FLD) analysis. We tested our framework in a motor imagery activity recognition scenario on PhysioNet Motor Movement/Imagery and BCI Competition-III Ⅳa datasets. For PhysioNet dataset, average performance results ranging between % 51 and % 61 across 20 subjects. For BCI Competition-Ⅲ dataset, we achieve an average recognition performance of % 76 which is above the minimum reliable communication rate (% 70). We achieved an average accuracy over the minimum reliable communication rate on the BCI Competition-Ⅲ dataset. Performance levels were lower on the PhysioNet dataset. These results indicate that a viable task recognition system is achievable using pairwise synchronization measures evaluated at the proper task specific lags.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.compbiomed.2019.103441 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!