Enhanced photoelectrocatalytic activity of direct Z-scheme porous amorphous carbon nitride/manganese dioxide nanorod arrays.

J Colloid Interface Sci

School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, PR China. Electronic address:

Published: December 2019

Carbon nitride (CN) is a promising photocatalyst that can be applied in environmental remediation and energy conversion. However, the absorption range and charge separation efficiency of CN are still severely restricted for its large-scale practical applications. Herein, we demonstrate a simple thermal polymerization and electrodeposition method, followed by partial etching strategy to synthesize direct Z-scheme porous zinc oxide/amorphous carbon nitride/manganese dioxide hybrid core-shell nanorod array (denoted as P-ZnO/ACN/MnO) by encapsulating amorphous carbon nitride layers (ACN) and manganese dioxide nanosheets (MnO) on the zinc oxide nanorod arrays (denoted as ZnO). Interestingly, ZnO serves as the collector of charge carriers and MnO plays a significant role in protecting ACN from corrosion. The as-prepared Z-scheme P-ZnO/ACN/MnO heterojunction exhibits high photocurrent density of 5.2 mA cm at 0.6 V vs. Ag/AgCl, high photoconversion efficiency 0.98%, and universal photoelectrocatalytic degradation activity for degradation of organic dyes under visible light irradiation. The band gap energy and conduction band position of ZnO, ACN and MnO are calculated by UV-visible diffuse reflection and Mott-Schottky measurement, which strongly support the direct Z-scheme charge carrier migration mechanism. This finding provides an efficient strategy to construct highly active and stable CN-based Z-scheme photocatalytic system.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2019.09.035DOI Listing

Publication Analysis

Top Keywords

direct z-scheme
12
z-scheme porous
8
amorphous carbon
8
carbon nitride/manganese
8
nitride/manganese dioxide
8
nanorod arrays
8
carbon nitride
8
z-scheme
5
enhanced photoelectrocatalytic
4
photoelectrocatalytic activity
4

Similar Publications

Defects Calculation and Accelerated Interfacial Charge Transfer in a Photoactive MOF-Based Heterojunction.

Small

January 2025

Institutes of Physical Science and Information Technology, Anhui Graphene Carbon Fiber Materials Research Center, Anhui University, Hefei, Anhui, 230601, P. R. China.

Photocatalytic hydrogen production is currently considered a clean and sustainable route to meet the energy and environmental issues. Among, heterojunction photocatalysts have been developed to improve their photocatalytic efficiency. Defect engineering of heterojunction photocatalysts is attractive due to it can perform as electron trap and change the band structure to optimize the interfacial separation rate of photogenerated electron-hole pairs.

View Article and Find Full Text PDF

The natural Z-scheme of oxygenic photosynthesis efficiently drives electron transfer from photosystem II (PSII) to photosystem I (PSI) via an electron transport chain, despite the lower energy levels of PSII. Inspired by this sophisticated mechanism, we present a layered cascade bio-solar cell (CBSC) that emulates the Z-scheme. In this design, chlorophyll derivatives (Chl) act as PSI analogs, while bacteriochlorophyll derivatives (BChl) serve as PSII analogs in the active layer.

View Article and Find Full Text PDF

How to improve the stability and activity of metal-organic frameworks is an attractive but challenging task in energy conversion and pollutant degradation of metal-organic framework materials. In this paper, a facile method is developed by fabricating titanium dioxide nanoparticles (TiO NPs) layer on 2D copper tetracarboxylphenyl-metalloporphyrin metal-organic frameworks with zinc ions as the linkers (ZnTCuMT-X, "Zn" represented zinc ions as the linkers, the first "T" represented tetracarboxylphenyl-metalloporphyrin (TCPP), "Cu" represented the Cu coordinated into the porphyrin macrocycle, "M" represented metal-organic frameworks, the second "T" represented TiO NPs layer, and "X" represented the added volume of n-tetrabutyl titanate (X = 100, 200, 300 or 400)). It is found that the optimized ZnTCuMT-200 showed greatly and stably enhanced H generation, which is ≈28.

View Article and Find Full Text PDF

A highly versatile Z-scheme heterostructure, HoSmSbO/YbDyBiNbO (HYO), was synthesized using an ultrasonic-assisted solvent thermal method. The HYO heterojunction, composed of dual ABO compounds, exhibits superior separation of photogenerated carriers due to its efficient Z-scheme mechanism. The synergistic properties of HoSmSbO and YbDyBiNbO, particularly the excellent visible light absorption, enable HYO to achieve exceptional photocatalytic performance in the degradation of fenitrothion (FNT).

View Article and Find Full Text PDF

Herein, we propose a new GaN/MoSiP van der Waals (vdWs) heterostructure constructed by vertically stacking GaN and MoSiP monolayers. Its electronic, optical, and photocatalytic properties are explored DFT++BSE calculations. The calculated binding energy and phonon spectrum demonstrated the material's high stabilities.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!