Perfluorodecanoic acid-induced oxidative stress and DNA damage investigated at the cellular and molecular levels.

Ecotoxicol Environ Saf

School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, PR China. Electronic address:

Published: December 2019

Perfluorodecanoic acid (PFDA) has been widely used in production of many daily necessities because of its special nature. Althoughtoxic effects of PFDA to organisms have been reported, there is little research on the genotoxicity induced by oxidative stress of PFDA on the cellular and molecular levels simultaneously. Thus, we investigated the DNA oxidative damage caused by PFDA in mouse hepatocytes. On the cellular level, an increase in ROS content indicated that PFDA caused oxidative stress in mouse hepatocytes. In addition, after PFDA exposure, the comet assay confirmed DNA strand breaks and an increased 8-OHdG content demonstrated DNA oxidative damage. On the molecular level, the microenvironment of aromatic amino acids, skeleton and secondary structure of catalase (CAT) were varied after PFDA exposure and the enzyme activity was reduced because PFDA bound near the heme groups of CAT. Moreover, PFDA was shown to interact with DNA molecule by groove binding. This study suggests that PFDA can cause genotoxicity by inducing oxidative stress both on the cellular and molecular levels.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ecoenv.2019.109699DOI Listing

Publication Analysis

Top Keywords

oxidative stress
16
cellular molecular
12
molecular levels
12
pfda
10
dna oxidative
8
oxidative damage
8
mouse hepatocytes
8
pfda exposure
8
oxidative
6
dna
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!