Objective: We identified a novel de novo KCNT1 variant in a patient with early-infantile epileptic encephalopathy (EIEE) and status dystonicus, a life-threatening movement disorder. We determined the functional consequences of this variant on the encoded K 1.1 channel to investigate the molecular mechanisms responsible for this disorder.

Methods: A retrospective case review of the proband is presented. We performed manual and automated electrophysiologic analyses of the KCNT1-L437F variant expressed heterologously in Chinese hamster ovary (CHO) cells in the presence of channel activators/blockers.

Results: The KCNT1-L437F variant, identified in a patient with refractory EIEE and status dystonicus, confers a gain-of-function channel phenotype characterized by instantaneous, voltage-dependent activation. Channel openers do not further increase L437F channel function, suggesting maximal activation, whereas channel blockers similarly block wild-type and variant channels. We further demonstrated that KCNT1 current can be measured on a high-throughput automated electrophysiology platform with potential value for future screening of novel and repurposed pharmacotherapies.

Interpretation: A novel pathogenic variant in KCNT1 associated with early-onset, medication-refractory epilepsy and dystonia causes gain-of-function with rapid activation kinetics. Our findings extend the genotype-phenotype relationships of KCNT1 variants to include severe dystonia.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6764634PMC
http://dx.doi.org/10.1002/acn3.50847DOI Listing

Publication Analysis

Top Keywords

status dystonicus
12
functional consequences
8
kcnt1 variant
8
eiee status
8
kcnt1-l437f variant
8
activation channel
8
variant
7
channel
6
kcnt1
5
consequences kcnt1
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!