A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Biotinylated and fluorophore-incorporated polymeric mixed micelles for tumor cell-specific turn-on fluorescence imaging of Al. | LitMetric

Biotinylated and fluorophore-incorporated polymeric mixed micelles for tumor cell-specific turn-on fluorescence imaging of Al.

J Mater Chem B

Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules and College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China.

Published: April 2020

Excessive amounts of Al3+ in the human body can cause adverse effects on immune function and induce several neurodegenerative disorders. So far, most of the reported fluorescent probes for Al3+ present some common drawbacks, such as low sensitivity and poor water solubility. In addition, a number of traditional fluorescent probes failed to image Al3+ in tumor cells due to the lack of tumor cell targeting capacity and cell penetrating abilities. To overcome these shortcomings, we constructed tumor-targeting fluorescent mixed nano-micelles (mPEG-Dye-Biotin) with an average particle size of 21 nm from an amphiphilic polymer containing a Schiff-base fluorescent unit (mPEG-Dye) and another amphiphilic polymer containing a tumor cell recognition ligand (DSPE-PEG-Biotin), through the co-self-assembly of both amphiphilic polymers in water using the film rehydration method. The as-prepared nanoprobe showed a highly sensitive and selective turn-on fluorescence response to Al3+ in aqueous solution with a low detection limit. MTT assay revealed the negligible cytotoxicity of the mPEG-Dye-Biotin nanoprobe to both HeLa cells and COS-7 cells, indicating the safety of mPEG-Dye-Biotin for biological applications. More importantly, the biotinylated nanoprobe showed better ability to enter biotin receptor-positive HeLa cells than that of the non-biotinylated micelle mPEG-Dye, which made it more suitable for imaging Al3+ in biotin receptor-positive tumor cells. This work provides a simple and general strategy to design a highly sensitive and tumor cell-specific metal ion nanoprobe, which can not only be applied in Al3+ imaging, but can also be extended to other ions or biomolecules by changing the incorporated fluorescent unit in the amphiphilic polymer.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c9tb01508fDOI Listing

Publication Analysis

Top Keywords

amphiphilic polymer
12
tumor cell-specific
8
turn-on fluorescence
8
fluorescent probes
8
tumor cells
8
tumor cell
8
fluorescent unit
8
highly sensitive
8
hela cells
8
biotin receptor-positive
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!