Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Unambiguous detection of chemical and physical signatures of microbial life on Mars or other solar system bodies requires differentiation between signals produced by biotic and abiotic processes; instruments aimed at generalized extant life detection would therefore increase the science return of a life-detection mission. Here, we investigate Bioelectrochemical Systems (BES) as a technique to measure microbial metabolism (which produces electrical current and redox changes) and distinguish between potential abiotic and biotic responses in environmental samples. Samples from inhabited niches should contain everything necessary to produce current, that is, catalysts (microorganisms) and fuel (nutrients). BES can also probe for inactive organisms in less energetically rich areas by adding a fuel to drive metabolism. A commercial potting soil and a Mars simulant soil were inoculated in the anodic chamber of microbial fuel cells, and current was monitored over time. Addition of a fuel (electron donor) source was tested for metabolic stimulation of endogenous microbes. Redox reactions between Mars simulant soil and the introduced electron donor (lactate) produced false-positive results, emphasizing the importance of careful interpretation of signals obtained. The addition of lactate to both soils resulted in enhanced biologically produced current, allowing stimulation and detection of dormant microbes. Our results demonstrate that BES provide an approach to detect metabolism in samples without prior knowledge of the organisms present, and that thorough electrochemical analyses and experimental design are necessary to determine if signals are biotic.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1089/ast.2018.1892 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!