AI Article Synopsis

  • The assembly of small molecules into larger structures relies on noncovalent interactions and has various practical applications, including fluorescence assays and gas storage.
  • Researchers used nuclear magnetic resonance spectroscopy to study how a small-molecule probe (fluorophenol) interacts with sunset yellow across different concentrations.
  • The findings revealed that adding fluorophenol does not significantly change the aggregation behavior of sunset yellow.

Article Abstract

The assembly of small molecules into larger structures, often driven by noncovalent interactions such as hydrogen bonding, aromatic stacking interactions, and burial of hydrophobic surface, is of widespread interest. The interaction of small molecules with aggregates also has a large range of applications from fluorescence aggregation assays to gas storage in framework materials. Here, we utilize nuclear magnetic resonance spectroscopy to investigate the interaction of a small-molecule probe on the assembly state of sunset yellow across a wide range of relative concentrations. Information from both macroscopic (diffusion) and microscopic (chemical shifts) measurements allows the interaction to be studied and the binding mode to be interrogated. Using fluorophenol as the small-molecule probe, we show that the aggregation behavior of sunset yellow is broadly unaffected by the relative amount of fluorophenol added.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpcb.9b07997DOI Listing

Publication Analysis

Top Keywords

sunset yellow
12
small molecules
8
small-molecule probe
8
small-molecule probes
4
probes investigate
4
investigate aggregation
4
aggregation sunset
4
yellow fcf
4
fcf concentration
4
concentration limits?
4

Similar Publications

Quaternary ammonium-modified cellulose: A sustainable strategy for purifying aqueous solutions contaminated with sunset yellow dye.

Int J Biol Macromol

January 2025

Department of Chemistry, Faculty of Science, Ege University, Bornova, Izmir 35040, Türkiye. Electronic address:

This study showcases the remarkable efficacy of quaternary ammonium-modified cellulose as a highly sustainable biosorbent for removing Sunset Yellow (SY) dye from water. Detailed analysis was conducted using infrared (FTIR) spectroscopy for structural changes and Scanning Electron Microscopy (SEM) for morphological changes. A minimal yet highly effective dose of 0.

View Article and Find Full Text PDF

Azo dyes, such as tartrazine and sunset yellow, are widely used as affordable and stable food colorants. Accurate quantification is crucial in foods for regulatory monitoring to ensure compliance with safety standards and minimize health risks. This study developed a low-cost and eco-friendly method using digital images and chemometrics for the simultaneous determination of these dyes in food samples.

View Article and Find Full Text PDF

A fast and highly sensitive electrochemical sensor (ECS) is crucially desirable for observing synthetic dyes in foodstuffs, as excessive consumption of these colorants can pose risks to human health, including toxicity and pathogenicity. This research introduces the creation of an ECS comprising a CuO-ZrO nanocomposite for detecting Sunset Yellow (SY) dye in beverage and food items. The synthesized CuO-ZrO material underwent thorough characterization using various physicochemical and electroanalytical methods.

View Article and Find Full Text PDF

Simultaneous detection of mixed colorants adulterated in black tea based on various morphological SERS sensors.

Food Res Int

January 2025

State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China. Electronic address:

Colorant adulteration is a common problem in tea safety control; thus, a rapid identification method is required. In this study, we optimized the fabrication parameters of various sensors to enhance their performance. R6G was used as a probe molecule, demonstrating that the sensnor remained stable for 120 days.

View Article and Find Full Text PDF

Characterization of food color additives and evaluation of their acute toxicity in Wistar albino rats.

Vet World

October 2024

Department of Microbiology, College of Veterinary Medicine, University of Baghdad, Baghdad, Iraq.

Article Synopsis
  • The study investigates the toxicity and chemical nature of commercial food dyes versus standard dyes, focusing on potential health risks like anemia and cancer.
  • Three food color additives (Sunset Yellow, Tartrazine, and Carmoisine) were analyzed using FTIR spectroscopy and lethal dose tests in Wistar albino rats, with doses ranging from 2 to 15 g/kg body weight.
  • Results showed commercial dyes generally had lower melting points and were more toxic, with signs of adverse effects noted at the highest dose, highlighting differences in purity and composition compared to standard dyes.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!