Aim: Tieg1 is involved in multiple signalling pathways, human diseases, and is highly expressed in muscle where its functions are poorly understood.

Methods: We have utilized Tieg1 knockout (KO) mice to identify novel and important roles for this transcription factor in regulating muscle ultrastructure, metabolism and mitochondrial functions in the soleus and extensor digitorum longus (EDL) muscles. RNA sequencing, immunoblotting, transmission electron microscopy, MRI, NMR, histochemical and mitochondrial function assays were performed.

Results: Loss of Tieg1 expression resulted in altered sarcomere organization and a significant decrease in mitochondrial number. Histochemical analyses demonstrated an absence of succinate dehydrogenase staining and a decrease in cytochrome c oxidase (COX) enzyme activity in KO soleus with similar, but diminished, effects in the EDL. Decreased complex I, COX and citrate synthase (CS) activities were detected in the soleus muscle of KO mice indicating altered mitochondrial function. Complex I activity was also diminished in KO EDL. Significant decreases in CS and respiratory chain complex activities were identified in KO soleus. H-NMR spectra revealed no significant metabolic difference between wild-type and KO muscles. However, P spectra revealed a significant decrease in phosphocreatine and ATPγ. Altered expression of 279 genes, many of which play roles in mitochondrial and muscle function, were identified in KO soleus muscle. Ultimately, all of these changes resulted in an exercise intolerance phenotype in Tieg1 KO mice.

Conclusion: Our findings have implicated novel roles for Tieg1 in muscle including regulation of gene expression, metabolic activity and organization of tissue ultrastructure. This muscle phenotype resembles diseases associated with exercise intolerance and myopathies of unknown consequence.

Download full-text PDF

Source
http://dx.doi.org/10.1111/apha.13394DOI Listing

Publication Analysis

Top Keywords

muscle
8
tieg1 muscle
8
metabolism mitochondrial
8
novel roles
8
mitochondrial function
8
soleus muscle
8
identified soleus
8
spectra revealed
8
exercise intolerance
8
tieg1
6

Similar Publications

Electroencephalogram Features Reflect Effort Corresponding to Graded Finger Extension: Implications for Hemiparetic Stroke.

Biomed Phys Eng Express

January 2025

F. Joseph Halcomb III, MD, Department of Biomedical Engineering, University of Kentucky, 143 Graham Ave., Lexington, Kentucky, 40506, UNITED STATES.

Brain-computer interfaces (BCIs) offer disabled individuals the means to interact with devices by decoding the electroencephalogram (EEG). However, decoding intent in fine motor tasks can be challenging, especially in stroke survivors with cortical lesions. Here, we attempt to decode graded finger extension from the EEG in stroke patients with left-hand paresis and healthy controls.

View Article and Find Full Text PDF

Description: In July 2024, the U.S. Department of Veterans Affairs (VA) and U.

View Article and Find Full Text PDF

This study aimed to investigate the impact of dietary soybean oil and probiotics on goat meat quality, total conjugated linoleic acids (TCLA) concentration, and nutritional quality indicators of goats. Thirty-six male crossbred goats (Anglo-Nubian♂× Thai native♀), weighing 18.3 ± 2.

View Article and Find Full Text PDF

Utility of the 6-Min Walk Test for Assessing Physical Performance in Pediatric Heart Transplant Recipients.

Clin Transplant

January 2025

Department of Pediatric Nephrology and Transplantation, New Children's Hospital, Helsinki University Hospital, Helsinki, Finland and University of Helsinki, Helsinki, Finland.

Background: Physical performance capacity (PPC) of pediatric heart transplant (HT) recipients is reportedly low to normal, and longitudinal follow-up of these patients is recommended. However, no recommendation for a follow-up method is available. In this study, the correlation between the 6-min walk test (6MWT), various clinical parameters, and a physical performance test set was evaluated to develop a simple follow-up tool for PPC.

View Article and Find Full Text PDF

Background And Objectives: Guillain-Barré syndrome (GBS), an acute inflammatory disorder of the peripheral nervous system, is characterized by muscle weakness and paralysis. Prompt identification of patients at a high risk of poor outcomes is crucial for timely intervention. In this study, we combined clinical data with nerve conduction study and electromyography data to identify the predictors of GBS outcomes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!