The mechanical properties of the cell nucleus are increasingly recognized as critical in many biological processes. The deformability of the nucleus determines the ability of immune and cancer cells to migrate through tissues and across endothelial cell layers, and changes to the mechanical properties of the nucleus can serve as novel biomarkers in processes such as cancer progression and stem cell differentiation. However, current techniques to measure the viscoelastic nuclear mechanical properties are often time consuming, limited to probing one cell at a time, or require expensive, highly specialized equipment. Furthermore, many current assays do not measure time-dependent properties, which are characteristic of viscoelastic materials. Here, we present an easy-to-use microfluidic device that applies the well-established approach of micropipette aspiration, adapted to measure many cells in parallel. The device design allows rapid loading and purging of cells for measurements, and minimizes clogging by large particles or clusters of cells. Combined with a semi-automated image analysis pipeline, the microfluidic device approach enables significantly increased experimental throughput. We validated the experimental platform by comparing computational models of the fluid mechanics in the device with experimental measurements of fluid flow. In addition, we conducted experiments on cells lacking the nuclear envelope protein lamin A/C and wild-type controls, which have well-characterized nuclear mechanical properties. Fitting time-dependent nuclear deformation data to power law and different viscoelastic models revealed that loss of lamin A/C significantly altered the elastic and viscous properties of the nucleus, resulting in substantially increased nuclear deformability. Lastly, to demonstrate the versatility of the devices, we characterized the viscoelastic nuclear mechanical properties in a variety of cell lines and experimental model systems, including human skin fibroblasts from an individual with a mutation in the lamin gene associated with dilated cardiomyopathy, healthy control fibroblasts, induced pluripotent stem cells (iPSCs), and human tumor cells. Taken together, these experiments demonstrate the ability of the microfluidic device and automated image analysis platform to provide robust, high throughput measurements of nuclear mechanical properties, including time-dependent elastic and viscous behavior, in a broad range of applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6810812 | PMC |
http://dx.doi.org/10.1039/c9lc00444k | DOI Listing |
ACS Macro Lett
January 2025
Key Laboratory of Materials Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Materials Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, State Key Laboratory of Materials Processing and Die & Mould Technology, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
As a special kind of supramolecular compound with many favorable properties, pillar[]arene-based supramolecular polymer networks (SPNs) show potential application in many fields. Although we have come a long way using pillar[]arene to prepare SPNs and construct a series of smart materials, it remains a challenge to enhance the mechanical strength of pillar[]arene-based SPNs. To address this issue, a new supramolecular regulation strategy was developed, which could precisely control the preparation of pillar[]arene-based SPN materials with excellent mechanical properties by adjusting the polymer network structures.
View Article and Find Full Text PDFJ Phys Chem Lett
January 2025
Department of Physics, Rutgers University, Newark, New Jersey 07102, United States of America.
Graph Neural Networks (GNNs) have emerged as powerful tools for predicting material properties, yet they often struggle to capture many-body interactions and require extensive manual feature engineering. Here, we present EOSnet (Embedded Overlap Structures for Graph Neural Networks), a novel approach that addresses these limitations by incorporating Gaussian Overlap Matrix (GOM) fingerprints as node features within the GNN architecture. Unlike models that rely on explicit angular terms or human-engineered features, EOSnet efficiently encodes many-body interactions through orbital overlap matrices, providing a rotationally invariant and transferable representation of atomic environments.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
College of Computer Science and Technology, Xi'an University of Science and Technology, Xi'an 710054, China.
Soft and stretchable strain sensors are crucial for applications in human-machine interfaces, flexible robotics, and electronic skin. Among these, capacitive strain sensors are widely used and studied; however, they face challenges due to material and structural constraints, such as low baseline capacitance and susceptibility to external interference, which result in low signal-to-noise ratios and poor stability. To address these issues, we propose a U-shaped electrode flexible strain sensor based on liquid metal elastomer (LME).
View Article and Find Full Text PDFBiophys J
January 2025
Department of Physics, Northeastern University, Boston, MA, 02115, USA. Electronic address:
Binuclear ruthenium complexes have been investigated for potential DNA-targeted therapeutic and diagnostic applications. Studies of DNA threading intercalation, in which DNA base pairs must be broken for intercalation, have revealed means of optimizing a model binuclear ruthenium complex to obtain reversible DNA-ligand assemblies with the desired properties of high affinity and slow kinetics. Here, we used single-molecule force spectroscopy to study a binuclear ruthenium complex with a longer semi-rigid linker relative to the model complex.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Department of Mechanical Engineering, Politecnico di Milano, Via Giuseppe La Masa 1, 20156 Milan, Italy.
Radiofrequency ablation (RFA) is a minimally invasive procedure that utilizes localized heat to treat tumors by inducing localized tissue thermal damage. The present study aimed to evaluate the temperature evolution and spatial distribution, ablation size, and reproducibility of ablation zones in ex vivo liver, kidney, and lung using a commercial device, i.e.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!