Normal placentation entails highly regulated interactions of maternal leukocytes with vascular and trophoblast cells to favor vascular transformation. Neutrophil activation and neutrophil extracellular trap (NET) formation associate with poor placentation and severe pregnancy complications. To deepen into the mechanisms of trophoblast-neutrophil interaction, we explored the effects of NETs on trophoblast cell function and, conversely, whether trophoblast cell-derived factors condition neutrophils to favor angiogenesis and anti-inflammatory signals required for fetal growth. NETs isolated from activated neutrophils hindered trophoblast cell migration. Trophoblast conditioned media prevented the effect as well as the vasoactive intestinal peptide (VIP) known to regulate trophoblast and neutrophil function. On the other hand, factors released by trophoblast cells and VIP shaped neutrophils to a proangiogenic profile with increased vascular endothelial growth factor synthesis and increased capacity to promote vascular transformation. Results presented here provide novel clues to reconstruct the interaction of trophoblast cells and neutrophils in vivo during placentation in humans.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jcp.29247 | DOI Listing |
Sci Rep
January 2025
Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
Extramammary Paget disease (EMPD) is a rare skin cancer that typically occurs in the anogenital area of older people. Since efficacy of treatments for metastatic or unresectable EMPD remains poor, development of a novel therapeutic approach is strongly desired. However, the lack of EMPD models has hampered investigation of EMPD.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Obstetrics and Gynaecology, University of Cambridge, NIHR Cambridge Biomedical Research Centre, Cambridge, United Kingdom.
The placenta is the critical interface between mother and fetus, and consequently, placental dysfunction underlies many pregnancy complications. Placental formation requires an adequate expansion of trophoblast stem and progenitor cells followed by finely tuned lineage specification events. Here, using single-cell RNA sequencing of mouse trophoblast stem cells during the earliest phases of differentiation, we identify gatekeepers of the stem cell state, notably Nicol1, and uncover unsuspected trajectories of cell lineage diversification as well as regulators of lineage entry points.
View Article and Find Full Text PDFAdv Anat Embryol Cell Biol
January 2025
Department of Animal Sciences, College of Agricultural, Consumer and Environmental Sciences, University of Illinois, Urbana, IL, USA.
Extracellular vesicles (EVs), including exosomes and microvesicles, have emerged as pivotal mediators of intercellular communication. Embryo implantation is a critical process in early pregnancy and requires communication between the embryo and maternal uterus. EVs are important in coordinating the communication between the embryo and maternal uterus.
View Article and Find Full Text PDFNPJ Biofilms Microbiomes
December 2024
Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
Fetal growth restriction (FGR) is a common complication of pregnancy, which seriously endangers fetal health and still lacks effective therapeutic targets. Clostridium difficile (C. difficile) is associated with fetal birth weight, and its membrane vesicles (MVs) are pathogenic vectors.
View Article and Find Full Text PDFAm J Reprod Immunol
January 2025
Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.
Preeclampsia is one of the most severe obstetric complications, yet its pathogenesis remains unclear. Decidual natural killer (dNK) cells, the most abundant immune cells at the maternal-fetal interface, are closely associated with preeclampsia due to abnormalities in their quantity, phenotype, and function. This review summarizes the molecular mechanisms by which dNK cells regulate extravillous trophoblast (EVT) invasion, promote uterine spiral artery remodeling, and maintain immune tolerance.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!