Background: Ulcerative colitis (UC) is an inflammatory bowel disease (IBD) that causes regions of ulceration within the interior of the colon. UC is estimated to afflict hundreds of thousands of people in the United States alone. In addition to traditional colonoscopy, ultrasonic techniques can detect colitis, but have limited spatial resolution, which frequently results in underdiagnoses. Nevertheless, clinical diagnosis of colitis is still generally performed via colonoscopy. Optical techniques such as confocal microscopy and optical coherence tomography (OCT) have been proposed to detect UC with higher resolution. However, UC can potentially alter tissue biomechanical properties, providing additional contrast for earlier and potentially more accurate detection. Although clinically available elastography techniques have been immensely useful, they do not have the resolution for imaging small tissues, such as in small mammalian disease models. However, OCT-based elastography, optical coherence elastography (OCE), is well-suited for imaging the biomechanical properties of small mammal colon tissue.
Methods: In this work, we induced elastic waves in mouse colon tissue using a focused air-pulse. The elastic waves were detected using a phase-stabilized swept source OCE system, and the wave velocity was translated into stiffness. Measurements were taken at six positions for each sample to assess regional sample elasticity. Additional contrast between the control and diseased tissue was detected by analyzing the dispersion of the elastic wave and tissue optical properties obtained from the OCT structural image.
Results: The results show distinct differences (P<0.05) in the stiffness between control and colitis disease samples, with a Young's modulus of 11.8±8.0 and 5.1±1.5 kPa, respectively. The OCT signal standard deviations for control and diseased samples were 5.8±0.3 and 5.5±0.2 dB, respectively. The slope of the OCT signal spatial frequency decay in the control samples was 92.7±10.0 and 87.3±4.7 dB∙µm in the colitis samples. The slope of the linearly fitted dispersion curve in the control samples was 1.5 mm, and 0.8 mm in the colitis samples.
Conclusions: Our results show that OCE can be utilized to distinguish tissue based on stiffness and optical properties. Our estimates of tissue stiffness suggest that the healthy colon tissue was stiffer than diseased tissue. Furthermore, structural analysis of the tissue indicates a distinct difference in tissue optical properties between the healthy and UC-like diseased tissue.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6732062 | PMC |
http://dx.doi.org/10.21037/qims.2019.06.03 | DOI Listing |
Neurol Neuroimmunol Neuroinflamm
March 2025
Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney.
Background And Objectives: Despite the absence of acute lesion activity in multiple sclerosis (MS), chronic neurodegeneration continues to progress, and a potential underlying mechanism could be the kynurenine pathway (KP). Prolonged activation of the KP from chronic inflammation is known to exacerbate the progression of neurodegenerative diseases through the production of neurotoxic metabolites. Among the 8 KP metabolites, six of them, namely kynurenine (KYN), 3-hydroxylkynurenine (3HK), anthranilic acid (AA), kynurenic acid (KYNA), and quinolinic acid (QUIN), have been associated with neurodegeneration.
View Article and Find Full Text PDFAdv Healthc Mater
January 2025
School of Pharmacy, Queen's University Belfast, Lisburn Road 97, Belfast, BT9 7BL, UK.
Implantable drug delivery systems are crucial for achieving sustained delivery of active compounds to specific sites or systemic circulation. In this study, a novel reservoir-type implant combining a biodegradable rate-controlling membrane with a drug-containing core prepared using direct compression techniques is developed. The membrane is composed of poly(caprolactone) (PCL), and risperidone (RIS) served as the model drug.
View Article and Find Full Text PDFAlzheimers Dement (Amst)
January 2025
Introduction: We explored associations between measurements of the ocular choroid microvasculature and Alzheimer's disease (AD) risk.
Methods: We measured the choroidal vasculature appearing in optical coherence tomography (OCT) scans of 69 healthy, mid-life individuals in the PREVENT Dementia cohort. The cohort was prospectively split into low-, medium-, and high-risk groups based on the presence of known risk factors (apolipoprotein E [] ε4 genotype and family history of dementia [FH]).
Ophthalmic Physiol Opt
January 2025
Department of Ophthalmology, National Taiwan University Hospital, Taipei, Taiwan.
Purpose: To investigate the repeatability of optical coherence tomography angiography (OCTA) parameters in participants with different severities of glaucoma.
Methods: Subjects with open-angle glaucoma were enrolled prospectively and categorised into mild (mean deviation [MD] of 24-2 visual field test ≥ -6 dB), moderate to advanced (-6 > MD ≥ -20 dB) and severe glaucoma groups (MD < -20 dB). OCTA was performed three times within a single visit to obtain superficial and deep macular vessel density (VD) and peripapillary vessel and capillary density.
J Biophotonics
January 2025
Department of Biomedical Engineering and Physics, Amsterdam UMC, Location University of Amsterdam, Amsterdam, The Netherlands.
In this study, we aim to validate the analytical Cramer-Rao lower bound (CRLB) equation for determining attenuation coefficients using a 1310 nm Optical Coherence Tomography (OCT) system. Our experimental results successfully confirm the validity of the equation, achieving unprecedented precision with a standard deviation below 0.01 mm for intralipid samples.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!