The upper airway epithelium, which is mainly composed of multiciliated, goblet, club and basal cells, ensures proper mucociliary function and can regenerate in response to assaults. In chronic airway diseases, defective repair leads to tissue remodeling. Delineating key drivers of differentiation dynamics can help understand how normal or pathological regeneration occurs. Using single-cell transcriptomics and lineage inference, we have unraveled trajectories from basal to luminal cells, providing novel markers for specific populations. We report that: (1) a precursor subgroup of multiciliated cells, which we have entitled deuterosomal cells, is defined by specific markers, such as DEUP1, FOXN4, YPEL1, HES6 and CDC20B; (2) goblet cells can be precursors of multiciliated cells, thus explaining the presence of hybrid cells that co-express markers of goblet and multiciliated cells; and (3) a repertoire of molecules involved in the regeneration process, such as keratins or components of the Notch, Wnt or BMP/TGFβ pathways, can be identified. Confirmation of our results on fresh human and pig airway samples, and on mouse tracheal cells, extend and confirm our conclusions regarding the molecular and cellular choreography at work during mucociliary epithelial differentiation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6826037 | PMC |
http://dx.doi.org/10.1242/dev.177428 | DOI Listing |
Clin Exp Immunol
January 2025
Translational Biomedical Sciences Program, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA.
Introduction: The ability of SARS-CoV-2 to evade antiviral immune signaling in the airway contributes to the severity of COVID-19 disease. Additionally, COVID-19 is influenced by age and has more severe presentations in older individuals. This raises questions about innate immune signaling as a function of lung development and age.
View Article and Find Full Text PDFCell Rep
December 2024
Institut de Biologie de l'ENS (IBENS), CNRS, INSERM, École Normale Supérieure, PSL Research University, Paris, France. Electronic address:
Meiosis, endoreplication, and asynthetic fissions are variations of the canonical cell cycle where either replication or mitotic divisions are muted. Here, we identify a cell cycle variantconserved across organs and mammals, where both replication and mitosis are muted, and that orchestrates the differentiation of post-mitotic progenitors into multiciliated cells (MCCs). MCC progenitors reactivate most of the cell cycle transcriptional program but replace the temporal expression of cyclins E2 and A2 with non-canonical cyclins O and A1.
View Article and Find Full Text PDFCell Rep
December 2024
Institut de Biologie de l'ENS (IBENS), CNRS, INSERM, Ecole Normale Supérieure, PSL Research University, Paris, France. Electronic address:
Multiciliated cells (MCCs) ensure fluid circulation in various organs. Their differentiation is marked by the amplification of cilia-nucleating centrioles, driven by a genuine cell-cycle variant, which is characterized by wave-like expression of canonical and non-canonical cyclins such as Cyclin O (CCNO). Patients with CCNO mutations exhibit a subtype of primary ciliary dyskinesia called reduced generation of motile cilia (RGMC).
View Article and Find Full Text PDFAirway multiciliated cells (MCs) maintain respiratory health by clearing mucus and trapped particles through the beating of motile cilia. While it is known that ciliary lengths decrease along the proximal-distal (P-D) axis of the tracheobronchial tree, how this is regulated is unclear. Here, we demonstrate that canonical Notch signaling in MCs plays a critical role in stabilizing ciliary length.
View Article and Find Full Text PDFiScience
December 2024
Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, Boler-Parseghian Center for Rare and Neglected Diseases, Warren Center for Drug Discovery, University of Notre Dame, Notre Dame, IN 46556, USA.
Cilia are hair-like organelles with vital physiological roles, and ciliogenesis defects underlie a range of severe congenital malformations and human diseases. Here, we report that is essential for cilia development across multiple embryonic tissues including the ear, neuromasts and Kupffer's vesicle (KV), which establishes left/right axial pattern. deficient embryos manifest altered fluid homeostasis and kidney defects including decreased multiciliated cells (MCCs), determining that is essential to properly establish several renal lineages.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!