Background: As the most ordinary metabolic disorder during pregnancy, gestational diabetes mellitus (GDM) has become a severe risk for the health of both pregnant female and fetus. Astragaloside IV (AS-IV) is the dominant active component in Astragalus membranaceus. It has been proved that AS-IV has anti-inflammation and immune-regulation function. We aimed to demonstrate the function of AS-IV in the therapy of GDM and the molecular mechanism in this process.

Methods: C57BL/KsJ-Lepdb/+ female mice were used as GDM model. The mRNA levels of relative genes in this research were detected by qRT-PCR. The protein levels of relative genes were analyzed by western blot. Serum concentration of interleukin-6 (IL-6) and tumor necrosis factor alpha (TNF-α) were analyzed by ELISA.

Results: Glucose and insulin levels in GDM mice model were decreased by AS-IV treatment. AS-IV down-regulated the expression of inflammatory gene IL-6 and TNF-α in GDM mice model. AS-IV treatment inhibited the expression of NLR family pyrin domain containing-3 (NLRP3) inflammasome relative proteins in the pancreas of GDM mice.

Conclusion: This study demonstrated that AS-IV treatment has an effective therapeutic function of GDM in mice model through the inhibition of NLRP3 inflammasome in the pancreas.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6764134PMC
http://dx.doi.org/10.1186/s12958-019-0522-7DOI Listing

Publication Analysis

Top Keywords

nlrp3 inflammasome
12
gdm mice
12
mice model
12
as-iv treatment
12
gestational diabetes
8
diabetes mellitus
8
levels relative
8
relative genes
8
gdm
7
as-iv
7

Similar Publications

Biodegradable Vanadium-Based Nanomaterials for Photothermal-Enhanced Tumor Ferroptosis and Pyroptosis.

ACS Appl Mater Interfaces

January 2025

Molecular Diagnostic Center, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Hangzhou First People's Hospital, Hangzhou 310006, China.

The designability and high reactivity of nanotechnology provide strategies for antitumor therapy by regulating the redox state in tumor cells. Here, we synthesize a kind of vanadium dioxide nanoparticle encapsulated in bovine serum albumin and containing disulfide bonds (VSB NPs) for photothermal-enhanced ferroptosis and pyroptosis effects. Mechanism studies show that disulfide bonds can effectively consume overexpressed glutathione (GSH) in the tumor microenvironment, leading to a decrease in glutathione peroxidase 4 (GPX4) activity.

View Article and Find Full Text PDF

Background: Chronic spontaneous urticaria (CSU) is a persistent skin condition with no known cause or trigger. The unpredictability of CSU attacks lowers patients' quality of life. NOD-like receptor pyrin domain containing 3 (NLRP3) gene dysregulation can result in numerous immunological and inflammatory diseases.

View Article and Find Full Text PDF

The nucleotide-binding domain, leucine-rich repeat, and pyrin domain containing-protein 3 (NLRP3) inflammasome is a multiprotein complex that plays a critical role in the innate immune response to both infections and sterile stressors. Dysregulated NLRP3 activation has been implicated in a variety of autoimmune and inflammatory diseases, including cryopyrin-associated periodic fever syndromes, diabetes, atherosclerosis, Alzheimer's disease, inflammatory bowel disease, and cancer. Consequently, fine-tuning NLRP3 activity holds significant therapeutic potential.

View Article and Find Full Text PDF

Background And Purpose: Autophagy-lysosomal pathway dysfunction leads to postoperative cognitive dysfunction (POCD). Dexmedetomidine (Dex) improves POCD, and we probed the effects of Dex on autophagy-lysosomal pathway dysfunction in a POCD model.

Experimental Approach: A POCD mouse model was established and intraperitoneally injected with Dex.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!