Mesoporous silica nanoparticles (MSNs) represent a promising inorganic platform for multiple biomedical applications. Previous studies have reported MSNs-induced hepatic and renal toxicity; however, the toxic mechanism remains unclear. This study aimed to investigate MSNs-induced hepatic and nephrotoxicity and test the hypothesis that altered TLR4/MyD88/NF-κB, JAK2/STAT3, and Nrf2/ARE/HO-1 signaling pathways mediate oxidative stress, inflammation, and fibrosis induced by MSNs. Rats were administered 25, 50, 100, and 200 mg/kg MSNs for 30 days, and samples were collected for analyses. MSNs induced functional and histologic alterations, increased the levels of reactive oxygen species (ROS), lipid peroxidation and nitric oxide, suppressed antioxidants, and Nrf2/HO-1 signaling in the liver and kidney of rats. MSNs up-regulated the expression of liver and kidney TLR4, MyD88, NF-κB p65, and caspase-3 and increased serum pro-inflammatory cytokines. In addition, MSNs activated the JAK2/STAT3 signaling pathway, down-regulated peroxisome proliferator activated receptor gamma (PPARγ), and promoted fibrosis evidenced by the increased collagen expression and deposition. In conclusion, this study conferred novel information on the role of ROS and deregulated TLR4/MyD88/NF-κB, JAK2/STAT3, PPARγ, and Nrf2/ARE/HO-1 signaling pathways in MSNs hepatic and nephrotoxicity. These findings provide experimental evidence for further studies employing genetic and pharmacological strategies to evaluate the safety of MSNs for their use in nanomedicine.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6843412 | PMC |
http://dx.doi.org/10.3390/biom9100528 | DOI Listing |
Front Biosci (Landmark Ed)
January 2025
Department of Zoology, College of Science, King Saud University, 11451 Riyadh, Saudi Arabia.
Background: We investigated chitosan's protective effects against tertiary butylhydroquinone (TBHQ)-induced toxicity in adult male rats, focusing on cognitive functions and oxidative stress in the brain, liver, and kidneys.
Methods: Rats were divided into four groups (n = 8/group): (1) Control, (2) Chitosan only, (3) TBHQ only, and (4) Chitosan + TBHQ.
Results: TBHQ exposure led to significant cognitive impairments and increased oxidative stress, marked by elevated malondialdehyde (MDA) and decreased superoxide dismutase (SOD) and glutathione (GSH) levels.
Front Biosci (Landmark Ed)
January 2025
Department of Surgery, School of Nutrition and Translational Research in Metabolism, Maastricht University, 6200 MD Maastricht, The Netherlands.
Sulfatides or 3-O-sulfogalactosylceramide are negatively charged sulfated glycosphingolipids abundant in the brain and kidneys and play crucial roles in nerve impulse conduction and urinary pH regulation. Sulfatides are present in the liver, specifically in the biliary tract. Sulfatides are self-lipid antigens presented by cholangiocytes to activate cluster of differentiation 1d (CD1d)-restricted type II natural killer T (NKT) cells.
View Article and Find Full Text PDFCell Transplant
January 2025
Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden.
Pediatric organ transplant recipients have a higher risk for wait list mortality due to the scarcity of size matched organs. Neonatal organ donation could potentially ameliorate the discrepancy but is currently not implemented in Sweden. This study aims to evaluate the potential of neonatal organ donation in central Sweden using a standardized protocol with organ specific criteria.
View Article and Find Full Text PDFPharmaceutics
January 2025
Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel.
Background/objectives: Leukocytes play a significant role in both acute kidney injury (AKI) and chronic kidney disease (CKD), contributing to pathogenesis and tissue damage. The process of leukocyte infiltration into the inflamed tissues is mediated by the interactions between the leukocytes and cell adhesion molecules (CAMs, i.e.
View Article and Find Full Text PDFNutrients
January 2025
Division of Epidemiology, Vanderbilt Epidemiology Center, Department of Medicine, Vanderbilt University Medical Center, Vanderbilt University School of Medicine, Nashville, TN 37203, USA.
Unlabelled: Metabolic dysfunction associated steatotic liver disease (MASLD) has been associated with increased risks of all-cause and cardiovascular disease (CVD) mortality. Identification of modifiable risk factors that may contribute to higher risks of mortality could facilitate targeted and intensive intervention strategies in this population. This study aims to examine whether the magnesium depletion score (MDS) is associated with all-cause and CVD mortality among individuals with MASLD or metabolic and alcohol associated liver disease (MetALD).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!