Epigallocatechin-3-gallate downregulates lipopolysaccharide signaling in human aortic endothelial cells by inducing ectodomain shedding of TLR4.

Eur J Pharmacol

Division of Nephrology, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea. Electronic address:

Published: November 2019

Epigallocatechin-3-gallate (EGCG), the most abundant polyphenol in green tea leaves, has anti-inflammatory effects. In this study, we investigated the mechanism by which EGCG attenuates the effects of lipopolysaccharide (LPS), an agonist of toll-like receptor 4 (TLR4), in cultured human aortic endothelial cells (HAECs). The increase in the expression of intercellular adhesion molecule-1 (ICAM-1) induced by LPS (100 ng/ml) was effectively attenuated by pretreatment with EGCG (50 μM). Importantly, EGCG treatment resulted in a rapid reduction of cellular TLR4, which was accompanied by an increase in the N-terminal fragment of TLR4 in the culture supernatant, indicating that EGCG induces ectodomain shedding of TLR4. EGCG increased cytosolic Ca by inducing the release of intracellular stored Ca and the influx of extracellular Ca; accordingly, EGCG-induced ectodomain shedding of TLR4 was nullified by pretreatment with BAPTA-AM (10 μM), an intracellular Ca chelator. EGCG induced translocation of a disintegrin and metalloprotease 10 (ADAM10) to the cell surface, which was also blocked by BAPTA-AM. Treatment with ADAM10 inhibitor (GI254023X, 2 μM) and siRNA-mediated depletion of ADAM10 prevented EGCG-induced ectodomain shedding of TLR4 and abolished the inhibitory effect of EGCG on LPS-induced ICAM-1 expression. Collectively, these findings suggest that EGCG decreases cell surface TLR4 in HAECs by inducing ADAM10-mediated ectodomain shedding, and thereby attenuates the effects of LPS. This is a new mechanism of the suppressive effect of EGCG on LPS signaling.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejphar.2019.172692DOI Listing

Publication Analysis

Top Keywords

ectodomain shedding
20
shedding tlr4
16
egcg
10
human aortic
8
aortic endothelial
8
endothelial cells
8
tlr4
8
attenuates effects
8
egcg-induced ectodomain
8
cell surface
8

Similar Publications

Updates on Inflammatory Molecular Pathways Mediated by ADAM17 in Autoimmunity.

Cells

December 2024

Department of Translational Biomedicine and Neuroscience (DiBraiN), Section of Human Anatomy and Histology, University of Bari "Aldo Moro", Piazza Giulio Cesare 1, I-70124 Bari, Italy.

ADAM17 is a member of the disintegrin and metalloproteinase (ADAM) family of transmembrane proteases with immunoregulatory activity in multiple signaling pathways. The functional ADAM17 is involved in the shedding of the ectodomain characterizing many substrates belonging to growth factors, cytokines, receptors, and adhesion molecules. The ADAM17-dependent pathways are known to be crucial in tumor development and progression and in the modulation of many pathological and physiological processes.

View Article and Find Full Text PDF

Introduction: Skeletal muscle satellite cells (MuSCs or stem cells) play a crucial role in muscle development, maintenance, and regeneration, supporting both hypertrophy and regenerative myogenesis. Syndecans (SDCs) act as communication bridges within the muscle microenvironment, regulating interactions with extracellular matrix components and contributing significantly to tissue repair and inflammation. Specifically, syndecan-4 (SDC4) is involved in muscle regeneration at multiple stages.

View Article and Find Full Text PDF

Editorial: Methods and applications in molecular psychiatry: 2023.

Front Psychiatry

December 2024

Department of Psychiatry and Psychotherapy II, Bezirkskrankenhaus Günzburg, University of Ulm, Ulm, Germany.

View Article and Find Full Text PDF

The low-density lipoprotein receptor: Emerging post-transcriptional regulatory mechanisms.

Atherosclerosis

December 2024

Department of Medical Biochemistry, Amsterdam UMC Location AMC, University of Amsterdam, Meibergdreef 9, 1105AZ, Amsterdam, the Netherlands; Amsterdam Gastroenterology Endocrinology Metabolism (AGEM) Institute, Amsterdam UMC, Meibergdreef 9, 1105AZ, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences (ACS) Institute, Amsterdam UMC, Meibergdreef 9, 1105AZ, Amsterdam, the Netherlands. Electronic address:

Cholesterol is a vital component of cellular membranes and is an essential molecule in mammalian physiology. Yet dysregulation of hepatic cholesterol metabolism and an increase in plasma cholesterol is linked to development of atherosclerotic cardiovascular disease. Maintaining tight regulation of cholesterol homeostasis is therefore essential, elegantly highlighted by the control of hepatic low-density lipoprotein receptor (LDLR) abundance and associated lipoprotein clearance.

View Article and Find Full Text PDF

Low-affinity ligands of the epidermal growth factor receptor are long-range signal transmitters in collective cell migration of epithelial cells.

Cell Rep

November 2024

Department of Pathology and Biology of Diseases, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-Cho, Sakyo-ku, Kyoto 606-8501, Japan; Graduate School of Medicine, Tokushima University, Shinkura-cho, Tokushima 770-8501, Japan. Electronic address:

Article Synopsis
  • The study explores how low-affinity EGFR ligands, specifically epiregulin (EREG), activate the EGFR in cells during processes like collective cell migration.
  • It reveals that during this migration, certain patterns of signal activation occur that depend on the shedding of EGFR ligands and the structural integrity of cell junctions.
  • The absence of EREG in mice leads to slower ERK wave propagation and less effective cell movement, suggesting that low-affinity ligands are crucial for quick signaling between cells.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!