Light intensity plays an important role in the regulation of growth, behavior, reproduction, and welfare of avian species. Light intensity preference behavior has been suggested to be involved in welfare of birds. This study aims to investigate the effects of different light intensity and dual light intensity choice (DLIC) lighting program on plasma corticosterone (CORT), and tryptophan hydroxylase 2 (TPH2, the rate-limiting enzyme of serotonin biosynthesis) and tyrosine hydroxylase (TH, the rate-limiting enzyme of dopamine biosynthesis) gene expression in the brainstem of male chickens. Day old broilers were housed in two commercial houses, and placed in 24 pens. All the treatment groups were provided with 23 h light (L) /1 h dark (D) and 30 lx (lx) light intensity during the first week and then 18L:6D (10 lx) from day 7 to 14. Blood and brain were sampled at 14 days of age (10 lx) before the onset of light treatments. On day 15, four treatments (2, 10, 20, and 100 lx), and DLIC treatment (2/20 lx) were initiated. Samples were collected on days 15, 16, 17, 30 and 41. TPH2 expression in the dorsal raphe nucleus (DRN) and caudal raphe nucleus (CRN) of brainstem, and TPH2 and TH expression in ventral tegmental areas (VTN) of the midbrain were determined by qPCR. Results showed that bright light and DLIC lighting program temporarily attenuated plasma CORT, suggesting the short-term stress attenuating effect of bright light and DLIC lighting program. Differential TPH2 expression in the DRN and CRN observed in the DLIC birds indicate a significant effect of DLIC lighting program on the serotonergic activity in the avian brainstem. At the 41 days of age, the significant downregulation of TPH2 and TH expression occurred in the VTA of DLIC treated birds compared to the other group of birds. Taken together, temporal and spatial regulation of TPH2 and TH expression by DLIC lighting program indicate that compensatory regulation of serotonergic and dopaminergic activities might be involved in the light intensity preference behavior of birds, suggesting a possible beneficial effect of the DLIC lighting program on broiler welfare.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ygcen.2019.113289DOI Listing

Publication Analysis

Top Keywords

light intensity
32
dlic lighting
24
lighting program
24
tph2 expression
20
light
11
dlic
9
effects light
8
intensity
8
intensity dual
8
dual light
8

Similar Publications

Nitrogen doped Carbon Quantum Dots (NCQDs) have been synthesized using most economical and easiest hydrothermal process. Here, N-phenyl orthophenylenediamine and citric acid were utilised as a source of nitrogen and carbon for the preparation of NCQDs. The synthesized NCQDs were characterized using experimental techniques like UV - Vis absorption, FT-IR, transmission electron microscopy (TEM), X-ray Diffraction (XRD), EDX, dynamic light scattering (DLS), fluorimeter and time resolved fluorescence spectroscopy.

View Article and Find Full Text PDF

Light plays an important role in determining the L-ascorbate (AsA) pool size in plants, primarily through the transcriptional regulation of AsA metabolism-related genes. However, the specific mechanism of transcriptional induction responsible for light-dependent AsA biosynthesis remains unclear. In this study, we used a promoter sequence containing light-responsive motifs from GDP-L-galactose phosphorylase 2 (RrGGP2), a key gene involved in AsA overproduction in Rosa roxburghii fruits, to identify participating transcription factors.

View Article and Find Full Text PDF

Manipulating the optical landscape of single quantum dots (QDs) is essential to increase the emitted photon output, enhancing their performance as chemical sensors and single-photon sources. Micro-optical structures are typically used for this task, with the drawback of a large size compared to the embedded single emitters. Nanophotonic architectures hold the promise to modify dramatically the emission properties of QDs, boosting light-matter interactions at the nanoscale, in ultracompact devices.

View Article and Find Full Text PDF

Currently, the development of red Mn-activated fluoride luminescent materials attracts a lot of attention in optical thermometry sensors, solid lighting, display, and plant growth areas. Nevertheless, the thermal stability of Mn-activated fluoride luminescent materials is still a crucial issue. Herein, a new red RbNaVF:Mn luminescent material with outstanding thermal stability was successfully synthesized through the facial coprecipitation method.

View Article and Find Full Text PDF

To compare the long-term efficacy and safety of intense pulsed light (IPL) treatments using a 590-nm and an acne filter. In this prospective, randomized, paired-eye trial study, 30 patients with moderate and severe meibomian gland dysfunction (MGD) were followed up for at least one month after their last treatment. Group A received IPL treatment with an acne filter, a type of notch filter that blocks wavelengths between 600 and 800 nm, allowing IPL to emit wavelengths between 400-600 nm and 800-1200 nm.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!