Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Liquid water at temperatures above the boiling point and high pressures, also known as pressurized hot water, or subcritical water (SBCW), is an effective solvent for both polar and nonpolar organic solutes. This is often associated with the decrease of water's dielectric constant at high temperatures, apparently allowing water to behave like an organic solvent. The decrease of the solubility at high pressures, in turn, is explained by a mild increase of the dielectric constant of water. Nevertheless, the relationship among the dielectric constant of water, hydration, and the solubilities of polar and nonpolar molecules in SBCW remains poorly understood. Here, we study, through molecular dynamics, the hydration thermodynamic parameters and the solubility of nonpolar and polar aromatic model systems, for which a solubility increase in SBCW is observed. We show that the temperature dependence of the hydration free energy of the model nonpolar aromatic solutes is nonmonotonic, exhibiting a solute size independent maximum at ∼475 K, above which hydration becomes entropically favorable and enthalpically unfavorable. The monotonic increase of the solubility, separated here in hydration and vaporization or sublimation components of the pure liquid or solid solute, respectively, is, in turn, related to the temperature increase of the latter, and only to a minor extent with the decrease of the hydration free energy above ∼475 K, via the hydration entropy. A solubility increase or decrease is also found at high pressures for different solutes, explained by the relative magnitude of the hydration and the vaporization or sublimation components of the solubility. For the model solid polar system studied, the hydration free energy increases monotonically with the temperature, instead, and the solubility increase is caused by the decrease of the sublimation component of the solubility. Thus, despite the observed increase of the hydration free energy with pressure, related to the entropic component decrease, our results indicate that the dielectric constant plays no significant role on the solubility increase of nonpolar and polar solutes in SBCW, opposite to the dielectric constant picture. The structure of water next to the solutes is also investigated, and a structural enhancement at room temperature is observed, resulting in significantly stronger pair interactions between a water molecule and its third and fourth nearest water neighbors. This structural and energetic enhancement nearly vanishes, however, at high temperatures, contributing to a positive hydration entropy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jctc.9b00505 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!