Comparative benefits of simvastatin and exercise in a mouse model of vascular cognitive impairment and dementia.

FASEB J

Laboratory of Cerebrovascular Research, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada.

Published: December 2019

Aerobic physical exercise (EX) and controlling cardiovascular risk factors in midlife can improve and protect cognitive function in healthy individuals and are considered to be effective at reducing late-onset dementia incidence. By investigating commonalities between these preventative approaches, we sought to identify possible targets for effective interventions. We compared the efficacy of EX and simvastatin (SV) pharmacotherapy to counteract cognitive deficits induced by a high-cholesterol diet (2%, HCD) in mice overexpressing TGF-β1 (TGF mice), a model of vascular cognitive impairment and dementia. Cognitive deficits were found in hypercholesterolemic mice for object recognition memory, and both SV and EX prevented this decline. EX improved stimulus-evoked cerebral blood flow responses and was as effective as SV in normalizing endothelium-dependent vasodilatory responses in cerebral arteries. The up-regulation of galectin-3-positive microglial cells in white matter (WM) of HCD-fed TGF mice with cognitive deficits was significantly reduced by both SV and EX concurrently with cognitive recovery. Altered hippocampal neurogenesis, gray matter astrogliosis, or microgliosis did not correlate with cognitive deficits or benefits. Overall, results indicate that SV and EX prevented cognitive decline in hypercholesterolemic mice and that they share common sites of action in preventing endothelial cell dysfunction and reducing WM inflammation.-Trigiani, L. J., Royea, J., Tong, X.-K., Hamel, E. Comparative benefits of simvastatin and exercise in a mouse model of vascular cognitive impairment and dementia.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6894065PMC
http://dx.doi.org/10.1096/fj.201901002RDOI Listing

Publication Analysis

Top Keywords

cognitive deficits
16
model vascular
12
vascular cognitive
12
cognitive impairment
12
impairment dementia
12
cognitive
10
comparative benefits
8
benefits simvastatin
8
simvastatin exercise
8
exercise mouse
8

Similar Publications

Background: Tuberous sclerosis complex (TSC) is an autosomal dominant genetic disorder affecting multiple organ systems, with a prevalence of 1:6,760-1:13,520 live births in Germany. On the molecular level, TSC is caused by heterozygous loss-of-function variants in either of the genes TSC1 or TSC2, encoding the Tuberin-Hamartin complex, which acts as a critical upstream suppressor of the mammalian target of rapamycin (mTOR), a key signaling pathway controlling cellular growth and metabolism. Despite the therapeutic success of mTOR inhibition in treating TSC-associated manifestations, studies with mTOR inhibitors in children with TSC above two years of age have failed to demonstrate beneficial effects on disease-related neuropsychological deficits.

View Article and Find Full Text PDF

Background: Changes in amyloid beta (Aβ) and phosphorylated tau brain levels are known to affect brain network organization but very little is known about how plasma markers can relate to these measures. We aimed to address the relationship between centrality network changes and two plasma pathology markers: phosphorylated tau at threonine 231 (p-tau231), a proxy for early Aβ change, and neurofilament light chain (Nfl), a marker of axonal degeneration.

Methods: One hundred and four cognitively unimpaired individuals were divided into a high pathology load (33 individuals; HP) group and a low pathology (71 individuals; LP) one.

View Article and Find Full Text PDF

Cognitive impairment is a significant complication of type 2 diabetes mellitus (T2DM). However, the mechanisms underlying the development of cognitive dysfunction in individuals with T2DM remain elusive. Herein, we discussed the role of Bmal1, a core circadian rhythm-regulating gene, in the process of T2DM-associated cognitive dysfunction.

View Article and Find Full Text PDF

Insulin resistance is a condition characterized by the attenuated biological response in the presence of normal or elevated insulin level and therefore is characterized by the impaired sensitivity to insulin and impaired glucose disposal and utilization. Insulin resistance in brain/Brain insulin resistance (BIR) is accompanied by the various manifestations including alteration in glucose sensing by hypothalamic neurons, impaired sympathetic outflow in response to hypoglycemia, increased ROS production, impaired mitochondrial oxygen consumption in the brain, cognitive deficits and neuronal cell damage. It has been reported that the disrupted insulin signaling is accompanied by the reduced expression of insulin receptor (IR)/insulin receptor substrate 1 (IRS1)/PI3K/AKT and IGF-1 receptor (IGF-1R)/IRS2/PI3K pathways.

View Article and Find Full Text PDF

Connexin 43 contributes to perioperative neurocognitive disorder by attenuating perineuronal net of hippocampus in aged mice.

Cell Mol Life Sci

January 2025

Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Department of Anesthesiology and Perioperative MedicineSchool of Medicine, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, 1239 Sanmen Road, Hongkou District, Shanghai, 200434, China.

Background: Perioperative neurocognitive disorder (PND) is a prevalent form of cognitive impairment in elderly patients following anesthesia and surgery. The underlying mechanisms of PND are closely related to perineuronal nets (PNNs). PNNs, which are complexes of extracellular matrix primarily surrounding neurons in the hippocampus, play a critical role in neurocognitive function.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!