Nanotechnology has provided a novel approach for the preparation of a safe and highly effective pesticide formulation. Thiazole-Zn, a widely used bactericide, was successfully prepared at nanoscale by an innovative approach of final synthesis process control. Its plausible formation mechanism based on restricted particle aggregation in a nanoreactor was elucidated. Then in order to assess the application performance of thiazole-Zn nanoparticle, the nanoformulation (NPF) was conveniently formulated. Interestingly, the physicochemical properties of NPF showed better than that of the commercial pesticide formulation (CPF) in dispersibility, wettability, spreadability, and stability. At the same time, the in vitro bioassay showed that the minimum inhibitory concentrations (MICs) of NPF against pv (), pv (), subsp. (Jones) Holland (), and pv () were 46.88, 93.75, 93.75, and 375.00 mg/L, respectively, whereas those of CPF were 93.75, 375.00, 375.00, and 875.00 mg/L, respectively. Therefore, NPF exhibited stronger antibacterial activity against the above-mentioned pathogens. Moreover, NPF was more effective to bacterial blight of rice than CPF in field trial. As a conclusion, nanotechnology for pesticides by synthesis process control will have a potential in improving the utilization efficiency and relieving the corresponding environmental pollution.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jafc.9b03700 | DOI Listing |
J Med Internet Res
January 2025
Knight Foundation of Computing & Information Sciences, Florida International University, Miami, FL, United States.
Background: Digital biomarkers are increasingly used in clinical decision support for various health conditions. Speech features as digital biomarkers can offer insights into underlying physiological processes due to the complexity of speech production. This process involves respiration, phonation, articulation, and resonance, all of which rely on specific motor systems for the preparation and execution of speech.
View Article and Find Full Text PDFJ Cardiovasc Transl Res
January 2025
Department of Cardiology, Affiliated Hospital of Southwest Medical University, No.1 Section 1, Xiang Lin Road, Longmatan District, Luzhou, Sichuan, 646000, China.
CRISPR-Cas9 gene editing technology, as an innovative biomedical tool, holds significant potential in the prevention and treatment of atherosclerosis. By precisely editing key genes such as PCSK9, CRISPR-Cas9 offers the possibility of long-term regulation of low-density lipoprotein cholesterol (LDL-C), which may reduce the risk of cardiovascular diseases. Early clinical studies of gene editing therapies like VERVE-101 have yielded encouraging results, highlighting both the feasibility and potential efficacy of this technology.
View Article and Find Full Text PDFMol Neurobiol
January 2025
Translational Oncology Laboratory, Department of Zoology, Hansraj College, Delhi University, New Delhi, 110007, India.
This review explores the current understanding and recent advancements in neuroblastoma, one of the most common extracranial solid pediatric cancers, accounting for ~ 15% of childhood cancer-related mortality. The hallmarks of NBL, including angiogenesis, metastasis, apoptosis resistance, cell cycle dysregulation, drug resistance, and responses to hypoxia and ROS, underscore its complex biology. The tumor microenvironment's significance in disease progression is acknowledged in this study, along with the pivotal role of cancer stem cells in sustaining tumor growth and heterogeneity.
View Article and Find Full Text PDFEur Radiol Exp
January 2025
Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX3 9DU, UK.
Cerebral microbleeds (CMBs) are small, hypointense hemosiderin deposits in the brain measuring 2-10 mm in diameter. As one of the important biomarkers of small vessel disease, they have been associated with various neurodegenerative and cerebrovascular diseases. Hence, automated detection, and subsequent extraction of clinically useful metrics (e.
View Article and Find Full Text PDF3D Print Med
January 2025
Department of Surgical & Interventional Engineering, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK.
Background: Penile implant surgery is the standard surgical treatment for end-stage erectile dysfunction. However, the growing complexity of modern high-tech penile prostheses has increased the demand for more practical training opportunities. The most advanced contemporary training methods involve simulation training using cadavers, with costs exceeding $5,000 per cadaver, inclusive of biohazard fees.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!