Reliable and robust convergence to the electronic ground state within density functional theory (DFT) Kohn-Sham (KS) calculations remains a thorny issue in many systems of interest. In such cases, charge sloshing can delay or completely hinder the convergence. Here, we use an approach based on transforming the time-dependent DFT equations to imaginary time, followed by imaginary-time evolution, as a reliable alternative to the self-consistent field (SCF) procedure for determining the KS ground state. We discuss the theoretical and technical aspects of this approach and show that the KS ground state should be expected to be the long-imaginary-time output of the evolution, independent of the exchange-correlation functional or the level of theory used to simulate the system. By maintaining self-consistency between the single-particle wave functions (orbitals) and the electronic density throughout the determination of the stationary state, our method avoids the typical difficulties encountered in SCF. To demonstrate dependability of our approach, we apply it to selected systems which struggle to converge with SCF schemes. In addition, through the van Leeuwen theorem, we affirm the physical meaningfulness of imaginary-time TDDFT, justifying its use in certain topics of statistical mechanics such as in computing imaginary-time path integrals.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jctc.9b00617DOI Listing

Publication Analysis

Top Keywords

ground state
12
density functional
8
functional theory
8
robust convergence
8
convergence electronic
8
imaginary-time
4
imaginary-time time-dependent
4
time-dependent density
4
theory application
4
application robust
4

Similar Publications

Type-II multiferroicity from non-collinear spin order is recently explored in the van der Waals material NiI. Despite the importance for improper ferroelectricity, the microscopic mechanism of the helimagnetic order remains poorly understood. Here, the magneto-structural phases of NiI are investigated using resonant magnetic X-ray scattering (RXS) and X-ray diffraction.

View Article and Find Full Text PDF

In this research, the photophysical properties of metformin hydrochloride (MF-HCl) were studied using spectroscopic and molecular docking techniques. The interaction between metformin hydrochloride and caffeine is essential for understanding the pharmacokinetics of metformin, particularly in populations with high caffeine consumption. Metformin is a first-line medication for managing type 2 diabetes, while caffeine is a widely consumed dietary stimulant.

View Article and Find Full Text PDF

The potential energy curves, dipole moments and transition dipole moments of the 14 Λ-S states and 30 Ω states of TlBr cation were performed using the multi-reference configuration interaction method. The Davidson correction and spin-orbit coupling effects were also considered. The spectroscopic properties and transition properties of TlBr cation were reported at the first time.

View Article and Find Full Text PDF

Guaranteed efficient energy estimation of quantum many-body Hamiltonians using ShadowGrouping.

Nat Commun

January 2025

Institute for Quantum Inspired and Quantum Optimization, Hamburg University of Technology, Hamburg, Germany.

Estimation of the energy of quantum many-body systems is a paradigmatic task in various research fields. In particular, efficient energy estimation may be crucial in achieving a quantum advantage for a practically relevant problem. For instance, the measurement effort poses a critical bottleneck for variational quantum algorithms.

View Article and Find Full Text PDF

Background: Recognition and response to clinical deterioration of hospitalised patients is a worldwide health priority area. In response to this concern, international bodies have implemented early warning systems to help clinicians keep people safe and prevent patient deterioration. Registered nurses hold a significant role in managing care provision and utilise early warning system tools to support their clinical judgement when making decisions about patient care.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!