π-Conjugated two-dimensional covalent organic frameworks (2D COFs) are emerging as a novel class of electroactive materials for (opto)electronic and chemiresistive sensing applications. However, understanding the intricate interplay between chemistry, structure, and conductivity in π-conjugated 2D COFs remains elusive. Here, we report a detailed characterization for the electronic properties of two novel samples consisting of Zn- and Cu-phthalocyanine-based pyrazine-linked 2D COFs. These 2D COFs are synthesized by condensation of metal-phthalocyanine (M = Zn and Cu) and pyrene derivatives. The obtained polycrystalline-layered COFs are p-type semiconductors both with a band gap of ∼1.2 eV. A record device-relevant mobility up to ∼5 cm/(V s) is resolved in the dc limit, which represents a lower threshold induced by charge carrier localization at crystalline grain boundaries. Hall effect measurements (dc limit) and terahertz (THz) spectroscopy (ac limit) in combination with density functional theory (DFT) calculations demonstrate that varying metal center from Cu to Zn in the phthalocyanine moiety has a negligible effect in the conductivity (∼5 × 10 S/cm), charge carrier density (∼10 cm), charge carrier scattering rate (∼3 × 10 s), and effective mass (∼2.3) of majority carriers (holes). Notably, charge carrier transport is found to be anisotropic, with hole mobilities being practically null in-plane and finite out-of-plane for these 2D COFs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jacs.9b07644 | DOI Listing |
Mater Horiz
December 2024
Walter Schottky Institute, Technical University of Munich, 85748 Garching, Germany.
Semiconducting ternary nitrides are a promising class of materials that have received increasing attention in recent years, but often show high free electron concentrations due to the low defect formation energies of nitrogen vacancies and substitutional oxygen, leading to degenerate n-type doping. To achieve non-degenerate behavior, we now investigate a family of amorphous calcium-zinc nitride (Ca-Zn-N) thin films. By adjusting the metal cation ratios, we demonstrate band gap tunability between 1.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
Department of Electronic Engineering, Kwangwoon University, Seoul 01897, Republic of Korea.
The limited operational lifetime of quantum-dot light-emitting diodes (QLEDs) poses a critical obstacle that must be addressed before their practical application. Specifically, cadmium-free InP-based QLEDs, which are environmentally benign, experience significant operational degradation due to challenges in charge-carrier confinement stemming from the composition of InP quantum dots (QDs). This study investigates the operational degradation of InP QLEDs and provides direct evidence of the degradation process.
View Article and Find Full Text PDFChem Asian J
December 2024
SN Bose National Centre for Basic Sciences, Condensed Matter and Materials Physics, JD Block, Sector III, 700106, Salt Lake City, INDIA.
Mass-fraction-optimized heterojunction composites featuring precisely engineered interfaces and mesoporous structures are crucial for improving light absorption, minimizing electron-hole recombination, and boosting overall catalytic efficiency. Herein, highly efficient mesoporous-NiFe2O4@g-C3N4 heterojunctions were developed by embedding p-type NiFe2O4 nanoparticles (NPs) within n-type porous ultrathin g-C3N4 (p-uCN) nanosheets. The optimized NiFe2O4@g-C3N4, loaded with 20wt% magnetic counterparts, exhibits exceptional photocatalytic methylene blue degradation, achieving the highest performance in both photocatalytic and photo-Fenton processes with rate constants of 0.
View Article and Find Full Text PDFChemistry
December 2024
China University of Petroleum East China, College of Chemistry and chemical Engineering, CHINA.
The photosynthesis of hydrogen peroxide (H2O2) from oxygen (O2) represents a promising catalytic pathway, the limited efficiency of the oxygen reduction constitutes a primary barrier to enhancing production. In this content, alkali metal potassium (K+) and Br-doped g-C3N4 photocatalysts (K-CN) were successfully constructed by one-pot method. The introduction of K+ is not only beneficial to the transmission of space charge and the separation efficiency of photogenerated carriers, but also promotes the efficient production of H2O2 by 2e- oxygen reduction reaction.
View Article and Find Full Text PDFChem Asian J
December 2024
Vidyasirimedhi Institute of Science and Technology, Frontier research center, THAILAND.
Excited-state intramolecular proton transfer (ESIPT) molecules are promising fluorophores for various applications. Particularly, their self-absorption-free fluorescence properties would make them a perfect choice as emissive materials for organic light-emitting diodes (OLEDs). Nevertheless, to become effective emitters some of their properties need to be altered by structural modifications.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!