Clinical assessments for many musculoskeletal disorders involve evaluation of muscle stiffness, although it is not yet possible to obtain quantitative estimates from individual muscles. Ultrasound elastography can be used to estimate the material properties of unstressed, homogeneous, and isotropic materials by tracking the speed of shear wave propagation; these waves propagate faster in stiffer materials. Although elastography has been applied to skeletal muscle, there is little evidence that shear wave velocity (SWV) can directly estimate muscle stiffness since this tissue violates many of the assumptions required for there to be a direct relationship between SWV and stiffness. The objective of this study was to evaluate the relationship between SWV and direct measurements of muscle force and stiffness in contracting muscle. Data were collected from six isoflurane-anesthetized cats. We measured the short-range stiffness in the soleus via direct mechanical testing in situ and SWV via ultrasound imaging. Measurements were taken during supramaximal activation at optimum muscle length, with muscle temperature varying between 26°C and 38°C. An increase in temperature causes a decrease in muscle stiffness at a given force, thus decoupling the tension-stiffness relationship normally present in muscle. We found that increasing muscle temperature decreased active stiffness from 4.0 ± 0.3 MPa to 3.3 ± 0.3 MPa and SWV from 16.9 ± 1.5 m/s to 15.9 ± 1.6 m/s while force remained unchanged (mean ± SD). These results demonstrate that SWV is sensitive to changes in muscle stiffness during active contractions. Future work is needed to determine how this relationship is influenced by changes in muscle structure and tension. Shear wave ultrasound elastography is a noninvasive tool for characterizing the material properties of muscle. This study is the first to compare direct measurements of stiffness with ultrasound measurements of shear wave velocity (SWV) in a contracting muscle. We found that SWV is sensitive to changes in muscle stiffness, even when controlling for muscle tension, another factor that influences SWV. These results are an important step toward developing noninvasive tools for characterizing muscle structure and function.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6985815PMC
http://dx.doi.org/10.1152/japplphysiol.00112.2019DOI Listing

Publication Analysis

Top Keywords

muscle stiffness
24
shear wave
20
muscle
18
changes muscle
16
wave velocity
12
sensitive changes
12
stiffness
11
swv
9
ultrasound elastography
8
material properties
8

Similar Publications

A growing body of evidence suggests that actin plays a role in nuclear architecture, genome organisation, and regulation. Our study of human lung adenocarcinoma cells demonstrates that the equilibrium between actin isoforms affects the composition of the nuclear lamina, which in turn influences nuclear stiffness and cellular behaviour. The downregulation of β-actin resulted in an increase in nuclear area, accompanied by a decrease in A-type lamins and an enhancement in lamin B2.

View Article and Find Full Text PDF

The cardiac myosin binding protein-C (cMyBP-C) regulates cross-bridge formation and controls the duration of systole and diastole at the whole heart level. As known, mutations in cMyBP-C increase the cross-bridge number and rate of their cycling, hypercontractility, and myocardial hypertrophy. We investigated the effects of the mutations D75N and P161S of cMyBP-C related to hypertrophic cardiomyopathy on the mechanism of force generation in isolated slow skeletal muscle fibers.

View Article and Find Full Text PDF

After a fracture, patients have reduced willingness to bend and extend their elbow joint due to pain, resulting in muscle atrophy, contracture, and stiffness around the elbow. Moreover, this may lead to progressive atrophy of the muscles around the elbow, resulting in permanent functional loss. Currently, a goniometer is used to measure the range of motion, ROM, to evaluate the recovery of the affected limb.

View Article and Find Full Text PDF

Muscle stem cells (MuSCs) are essential for skeletal muscle regeneration, influenced by a complex interplay of mechanical, biochemical, and molecular cues. Properties of the extracellular matrix (ECM) such as stiffness and alignment guide stem cell fate through mechanosensitive pathways, where forces like shear stress translate into biochemical signals, affecting cell behavior. Aging introduces senescence which disrupts the MuSC niche, leading to reduced regenerative capacity via epigenetic alterations and metabolic shifts.

View Article and Find Full Text PDF

: To compare the lumbopelvic muscle mechanical properties (MMPs) of women with and without multiple sclerosis (MS) and explore relationships between these properties and sociodemographic/clinical characteristics. : This cross-sectional observational study included 22 women with MS and 22 age- and BMI-matched women without MS. MMPs (frequency, stiffness, decrement, relaxation, and creep) of pelvic floor and lumbar paravertebral muscles were assessed using a MyotonPRO device.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!