A new laboratory technique has been developed that utilizes gas-phase, direct-absorption millimeter and submillimeter spectroscopy to detect and identify desorbed species from interstellar and cometary ice analogues. Rotational spectroscopy is a powerful structure-specific technique for detecting isomers and other species possessing the same mass that are indistinguishable with mass spectrometry. Furthermore, the resultant laboratory spectra are directly comparable to observational data from far-infrared and millimeter telescopes. Here, we present the proof-of-concept measurements of the detection of thermally desorbed HO, DO, and CHOH originating in a solid film created at low temperature (∼12 K). The surface binding energy of HO is reported and compared to results from traditional techniques, including mass spectrometry and quartz-crystal microbalance measurements of mass loss. Lastly, we demonstrate that this technique can be used to derive thermodynamic values including the sublimation enthalpy and entropy of HO.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpca.9b04587DOI Listing

Publication Analysis

Top Keywords

mass spectrometry
8
millimeter/submillimeter spectroscopic
4
spectroscopic detection
4
detection desorbed
4
desorbed ices
4
technique
4
ices technique
4
technique laboratory
4
laboratory astrochemistry
4
astrochemistry laboratory
4

Similar Publications

Elevated A2F bisect N-glycans of serum IgA reflect progression of liver fibrosis in patients with MASLD.

J Gastroenterol

January 2025

Department of Gastroenterology and Hepatology, Graduate School of Medicine, Hokkaido University, Hokkaido, Japan.

Background: Advanced liver fibrosis in cases of metabolic dysfunction-associated steatotic liver disease (MASLD) leads to cirrhosis and hepatocellular carcinoma. The current gold standard for liver fibrosis is invasive liver biopsy. Therefore, a less invasive biomarker that accurately reflects the stage of liver fibrosis is highly desirable.

View Article and Find Full Text PDF

Acyl-CoA oxidase 1 (ACOX1), a member of the acyl-coenzyme A oxidase family, is considered a crucial regulator whose dysregulation is implicated in the occurrence and progression of various cancers. This study aims to elucidate the impact of ACOX1 in CRC, shedding light on its potential as a therapeutic target. Through analysis of the GEO dataset, it was found that ACOX1 is significantly downregulated in colorectal cancer (CRC), and this lower expression level is associated with a worse prognosis.

View Article and Find Full Text PDF

Examples of long-range gene regulation in bacteria are rare and generally thought to involve DNA looping. Here, using a combination of biophysical approaches including X-ray crystallography and single-molecule analysis for the KorB-KorA system in Escherichia coli, we show that long-range gene silencing on the plasmid RK2, a source of multi-drug resistance across diverse Gram-negative bacteria, is achieved cooperatively by a DNA-sliding clamp, KorB, and a clamp-locking protein, KorA. We show that KorB is a CTPase clamp that can entrap and slide along DNA to reach distal target promoters up to 1.

View Article and Find Full Text PDF

As global demand for fossil fuels rises amidst depleting reserves and environmental concerns, exploring sustainable and renewable energy sources has become imperative. This study investigated the pyrolysis of corncob, a widely available agricultural waste, using urea as a catalyst to enhance bio-oil production. The aim was to determine the optimum urea concentration and pyrolysis temperature for bio-oil yield from corncob.

View Article and Find Full Text PDF

We present the case of a toddler displaying neuroregression post-acute gastroenteritis, initially suggesting neurodegenerative disorders. Further investigations showed atypical results-neuroimaging was inconsistent with suspected disorders, while fundus evaluation, evoked potentials and nerve conduction velocity were normal. Specialised tests using gas chromatography mass spectrometry and tandem mass spectrometry identified methylmalonic acidaemia (MMA), implicating abnormal neurometabolism.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!