The effects of dietary fatty acids in the physiological outcomes of maternal high-fat diet on offspring energy homeostasis in mice.

J Dev Orig Health Dis

Department of Animal Sciences, School of Environmental & Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA.

Published: June 2020

The early-life origins of disease hypothesis has been applied to obesity research and modeled through overnutrition, usually with a high-fat diet (HFD). Since the obesity epidemic coincided with societal change in dietary fat consumption, rather than amount, manipulation of fatty acid (FA) profile is an under-investigated area of study. Additionally, the binding of FAs to nuclear receptors may have persistent intergenerational, extranutritive endocrinological effects that interact with the actions of reproductive steroids causing sex-dependent effects. To determine the role of FA type in the effects underlying maternal HFD, we fed wild-type C57BL6/J mating pairs, from preconception through lactation, a HFD with high saturated fat levels from coconut oil or high linoleic acid (LA) levels from vegetable oil. Male and female offspring body weight and food intake were measured weekly for 25 weeks. Assays for glucose metabolism, body composition, and calorimetry were performed at 25 weeks. Plasma metabolic peptides and liver mRNA were measured terminally. Obesity was primarily affected by adult rather than maternal diet in males, yet in females, maternal HFD potentiated the effects of adult HFD. Maternal HFD high in LA impaired glucose disposal in males weaned onto HFD and insulin sensitivity of females. Plasma leptin correlated with adiposity, but insulin and insulin receptor expression in the liver were altered by maternal LA in males. Our results suggest that maternal FA profile is most influential on offspring glucose metabolism and that adult diet is more important than maternal diet for obesity and other parameters of metabolic syndrome.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7096261PMC
http://dx.doi.org/10.1017/S2040174419000540DOI Listing

Publication Analysis

Top Keywords

maternal hfd
12
maternal
8
high-fat diet
8
hfd high
8
glucose metabolism
8
maternal diet
8
hfd
7
effects
5
diet
5
effects dietary
4

Similar Publications

MDPAO1 peptide from human milk enhances brown adipose tissue thermogenesis and mitigates obesity.

Mol Cell Endocrinol

December 2024

Department of Pediatric Laboratory, Affiliated Children's Hospital of Jiangnan University, Wuxi Children's Hospital, Wuxi, 214023, China; Department of Neonatology, Affiliated Children's Hospital of Jiangnan University, Wuxi Children's Hospital, Wuxi, 214023, China. Electronic address:

The regulatory effect of breastfeeding on offspring metabolism has garnered significant attention as an effective strategy in combating childhood obesity. However, the underlying mechanism remains largely unknown. Through integrated analysis of multiple human milk peptide databases and functional screening, MDPAO1 (milk-derived peptide associated with obesity 1) was identified as having potential activity in promoting the expression of thermogenic genes.

View Article and Find Full Text PDF

Introduction: Maternal health service (MHS) use is a key strategy to reduce maternal mortality. However, evidence is scarce in designing efficient intervention strategies in Ethiopia. Thus, we aimed to explore community members and healthcare providers' perceptions of MHS and barriers and facilitators of MHS use in southern Ethiopia.

View Article and Find Full Text PDF

Maternal high-fat diet orchestrates offspring hepatic cholesterol metabolism via MEF2A hypermethylation-mediated CYP7A1 suppression.

Cell Mol Biol Lett

December 2024

Department of Endocrinology, Peking University First Hospital, No. 8 Xishiku Ave, Xicheng, Beijing, 100034, People's Republic of China.

Background: Maternal overnutrition, prevalent among women of childbearing age, significantly impacts offspring health throughout their lifetime. While DNA methylation of metabolic-related genes mediates the transmission of detrimental effects from maternal high-fat diet (HFD), its role in programming hepatic cholesterol metabolism in offspring, particularly during weaning, remains elusive.

Methods: Female C57BL/6 J mice were administered a HFD or control diet, before and during, gestation and lactation.

View Article and Find Full Text PDF

: The rapidly increasing rate of obesity has become an extremely important public health problem, particularly in developed countries. Obesity is associated with a range of health problems, often referred to as the metabolic syndrome. Adipose tissue is now regarded as an endocrine organ responsible for the hormonal secretion of adipokines, which are cytokines involved in various physiological processes.

View Article and Find Full Text PDF

Maternal exercise programs placental miR-495-5p-mediated Snx7 expression and kynurenic acid metabolic pathway induced by prenatal high-fat diet: Based on miRNA-seq, transcriptomics, and metabolomics.

J Nutr Biochem

December 2024

Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, China. Electronic address:

Poor intrauterine environments increase the prevalence of chronic metabolic diseases in offspring, whereas maternal exercise is an effective measure to break this vicious intergenerational cycle. Placenta is increasingly being studied to explore its role in maternal-fetal metabolic cross-talk. The association between placental miRNA and offspring development trajectories has been established, yet the specific role and mechanism thereof in maternal exercise-induced metabolic protection remain elusive.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!