Analog Retinal Redshifts Visible Absorption of QuasAr Transmembrane Voltage Sensors into Near-infrared.

Photochem Photobiol

Molecular Biophysics Laboratory, Photonics Center and Department of Physics, Boston University, Boston, MA.

Published: January 2020

Opsin-based transmembrane voltage sensors (OTVSs) are increasingly important tools for neuroscience enabling neural function in complex brain circuits to be explored in live, behaving animals. However, the visible wavelengths required for fluorescence excitation of the current generation of OTVSs limit optogenetic imaging in the brain to depths of only a few mm due to the strong absorption and scattering of visible light by biological tissues. We report that substitution of the native A1 retinal chromophore of the widely used QuasAr1/2 OTVSs with the retinal analog MMAR containing a methylamino-modified dimethylphenyl ring results in over a 100-nm redshift of the maxima of the absorption and fluorescence emission bands to near 700 and 840 nm, respectively. FT-Raman spectroscopy reveals that at pH 7 QuasAr1 with both the A1 and MMAR chromophores possess predominantly an all-trans protonated Schiff base configuration with the MMAR chromophore exhibiting increased torsion of the polyene single-/double-bond system similar to the O-intermediate of the BR photocycle. In contrast, the A1 and the MMAR chromophores of QuasAr2 exist partially in a 13-cis PSB configuration. These results demonstrate that QuasArs containing the MMAR chromophore are attractive candidates for use as NIR-OTVSs, especially for applications such as deep brain imaging.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7004139PMC
http://dx.doi.org/10.1111/php.13169DOI Listing

Publication Analysis

Top Keywords

transmembrane voltage
8
voltage sensors
8
mmar chromophores
8
mmar chromophore
8
mmar
5
analog retinal
4
retinal redshifts
4
redshifts visible
4
visible absorption
4
absorption quasar
4

Similar Publications

Clinical trials have shown favorable effects of exercise on frailty, supporting physical activity (PA) as a treatment and prevention strategy. Proteomics studies suggest that PA alters levels of many proteins, some of which may function as molecules in the biological processes underlying frailty. However, these studies have focused on structured exercise programs or cross-sectional PA-protein associations.

View Article and Find Full Text PDF
Article Synopsis
  • The transmembrane potential is crucial for cellular functions like signaling and energy production, with Rhodamine voltage reporters (RhoVRs) serving as small, non-invasive sensors that can detect voltage changes, especially in mitochondria.
  • Extensive simulations and free-energy calculations revealed that the orientation of RhoVRs relative to membranes, influenced by their polarized functional groups, significantly impacts their voltage sensitivity and localization within cells.
  • The study's findings on the relationship between the chemical structure of RhoVRs and their membrane behavior offer valuable insights for designing fluorescent dyes that better detect voltage changes.
View Article and Find Full Text PDF

Members of the KCNE family are accessory subunits that modulate voltage-gated potassium channels. One member, KCNE4, has been shown to inhibit the potassium ion current in these channels. However, little is known about the structure, dynamics, and mode of inhibition of KCNE4, likely due to challenges in overexpressing and purifying the protein.

View Article and Find Full Text PDF

Background: R-Glabridin is a major flavonoid of licorice (Glycyrrhiza glabra) root and known to modulate GABAA receptors, which are targets of many clinical hypnotics. However, R-glabridin hypnotic activity has not been reported in animals.

Methods: Inverted photomotor responses (IPMRs) were used to assess the hypnotic effects of natural R-glabridin and synthetic R/S-glabridin in wild-type zebrafish larvae and transgenic larvae lacking functional GABAA receptor β3 subunits (β30/0).

View Article and Find Full Text PDF
Article Synopsis
  • HCN ion channels play a key role in cellular activity and pain perception, with propofol acting as an analgesic by inhibiting their function.
  • Researchers used a propofol analog to pinpoint binding sites on the human HCN1 isoform, revealing a specific pocket formed by certain residues in the channel.
  • Mutations in this binding pocket affect propofol's ability to modulate HCN1 currents, highlighting its specific binding mechanism and offering insights for developing targeted HCN channel modulators.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!