Opsin-based transmembrane voltage sensors (OTVSs) are increasingly important tools for neuroscience enabling neural function in complex brain circuits to be explored in live, behaving animals. However, the visible wavelengths required for fluorescence excitation of the current generation of OTVSs limit optogenetic imaging in the brain to depths of only a few mm due to the strong absorption and scattering of visible light by biological tissues. We report that substitution of the native A1 retinal chromophore of the widely used QuasAr1/2 OTVSs with the retinal analog MMAR containing a methylamino-modified dimethylphenyl ring results in over a 100-nm redshift of the maxima of the absorption and fluorescence emission bands to near 700 and 840 nm, respectively. FT-Raman spectroscopy reveals that at pH 7 QuasAr1 with both the A1 and MMAR chromophores possess predominantly an all-trans protonated Schiff base configuration with the MMAR chromophore exhibiting increased torsion of the polyene single-/double-bond system similar to the O-intermediate of the BR photocycle. In contrast, the A1 and the MMAR chromophores of QuasAr2 exist partially in a 13-cis PSB configuration. These results demonstrate that QuasArs containing the MMAR chromophore are attractive candidates for use as NIR-OTVSs, especially for applications such as deep brain imaging.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7004139 | PMC |
http://dx.doi.org/10.1111/php.13169 | DOI Listing |
Clinical trials have shown favorable effects of exercise on frailty, supporting physical activity (PA) as a treatment and prevention strategy. Proteomics studies suggest that PA alters levels of many proteins, some of which may function as molecules in the biological processes underlying frailty. However, these studies have focused on structured exercise programs or cross-sectional PA-protein associations.
View Article and Find Full Text PDFJ Mater Chem B
January 2025
Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.
J Phys Chem B
January 2025
Department of Chemistry and Biochemistry, Miami University, 651 E. High Street, Oxford, Ohio 45056, United States.
Members of the KCNE family are accessory subunits that modulate voltage-gated potassium channels. One member, KCNE4, has been shown to inhibit the potassium ion current in these channels. However, little is known about the structure, dynamics, and mode of inhibition of KCNE4, likely due to challenges in overexpressing and purifying the protein.
View Article and Find Full Text PDFAnesth Analg
November 2024
From the Department of Anesthesia Critical Care & Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts.
Background: R-Glabridin is a major flavonoid of licorice (Glycyrrhiza glabra) root and known to modulate GABAA receptors, which are targets of many clinical hypnotics. However, R-glabridin hypnotic activity has not been reported in animals.
Methods: Inverted photomotor responses (IPMRs) were used to assess the hypnotic effects of natural R-glabridin and synthetic R/S-glabridin in wild-type zebrafish larvae and transgenic larvae lacking functional GABAA receptor β3 subunits (β30/0).
Sci Adv
January 2025
Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO 63110, USA.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!