Tomato ( L.) is one of the most cultivated vegetable in the world and it represents a large source of bioactive compounds, including carotenoids and polyphenols (phenolic acids and flavonoids). However, the concentration of flavonoids in tomato is considered sub-optimal, particularly because anthocyanins are not generally present. Therefore, this crop has been the object of an intense metabolic engineering in order to obtain anthocyanin-enriched tomatoes by using either breeding or transgenic strategies. Some wild tomato species, such as and , biosynthesize anthocyanins in the fruit sub-epidermal tissue, and some alleles from those genotypes have been introgressed into a new developed purple tomato line, called "Sun Black" (SB). It is a tomato line with a purple skin color, both in green and in red fruit stages, due to the biosynthesis of anthocyanins in the peel, and a normal red color pulp, with a taste just like a traditional tomato. SB is the result of a breeding programme and it is not a genetically modified (GM) product. We report the chemical characterization and structure elucidation of the attractive anthocyanins found in the peel of SB tomato, as well as other bioactive compounds (carotenoids, polyphenols, vitamin C) of the whole fruit. Using one- and two-dimensional NMR experiments, the two main anthocyanins were identified to be petunidin 3--[6″--(4---coumaroyl-α-rhamnopyranosyl) -β-glucopyranoside]-5--β-glucopyranoside (petanin) and malvidin 3--[6″--(4---coumaroyl-α-rhamnopyranosyl)-β-glucopyranoside]-5--β-glucopyranoside (negretein). The total anthocyanins in the whole ripe fruit was 1.2 mg/g dry weight (DW); 7.1 mg/100 g fresh weight (FW). Chlorogenic acid (the most abundant phenolic acid) was 0.6 mg/g DW; 3.7 mg/100 g FW. The main flavonol, rutin was 0.8 mg/g DW; 5 mg/100 g FW. The total carotenoid content was 211.3 μg/g DW; 1,268 μg/100 g FW. The total phenolic content was 8.6 mg/g DW; 52.2 mg/100 g FW. The vitamin C content was 37.3 mg/100 g FW. The antioxidant activities as measured by the TEAC and ORAC assays were 31.6 and 140.3 μmol TE/g DW, respectively (193 and 855.8 μmol TE/100 g FW, respectively). The results show the unique features of this new tomato genotype with nutraceutical properties.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6722425PMC
http://dx.doi.org/10.3389/fnut.2019.00133DOI Listing

Publication Analysis

Top Keywords

tomato
9
"sun black"
8
black" tomato
8
bioactive compounds
8
carotenoids polyphenols
8
anthocyanins peel
8
mg/g mg/100
8
anthocyanins
6
mg/100
5
nutraceutical characterization
4

Similar Publications

Tobacco curly shoot virus (TbCSV), a begomovirus, causes significant economic losses in tobacco and tomato crops across East, Southeast, and South Asia. Despite its agricultural importance, the evolutionary dynamics and emergence process of TbCSV remain poorly understood. This study analyzed the phylodynamics of TbCSV by examining its nucleotide sequences of the coat protein (CP) gene collected between 2000 and 2022.

View Article and Find Full Text PDF

Iron Deficiency in Tomatoes Reversed by Strains: A Synergistic Role of Siderophores and Plant Gene Activation.

Plants (Basel)

December 2024

Plant Physiology, Pharmaceutical and Health Sciences Department, Faculty of Pharmacy, San Pablo-CEU Universities, 28668 Boadilla del Monte, Spain.

An alkaline pH in soils reduces Fe availability, limiting Fe uptake, compromising plant growth, and showing chlorosis due to a decrease in chlorophyll content. To achieve proper Fe homeostasis, dicotyledonous plants activate a battery of strategies involving not only Fe absorption mechanisms, but also releasing phyto-siderophores and recruiting siderophore-producing bacterial strains. A screening for siderophore-producing bacterial isolates from the rhizosphere of was carried out, resulting in two strains, Z8.

View Article and Find Full Text PDF

Plant height represents a pivotal agronomic trait for the genetic enhancement of crops. The plant cell wall, being a dynamic entity, is crucial in determining plant stature; however, the regulatory mechanisms underlying cell wall remodeling remain inadequately elucidated. This study demonstrates that the application of gibberellin 3 (GA3) enhances both plant height and cell wall remodeling in tomato () plants.

View Article and Find Full Text PDF

Identification and Functional Analysis of the Gene Conferring Resistance to Late Blight () in Tomato.

Plants (Basel)

December 2024

State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.

Late blight is a destructive disease affecting tomato production. The identification and characterization of resistance (R) genes are critical for the breeding of late blight-resistant cultivars. The incompletely dominant gene confers resistance against the race T of in tomatoes.

View Article and Find Full Text PDF

Tomato (Jinglu 6335) was selected for assessing the impact of varying fertilizer (F:N-PO-KO) and aeration rates on crop quality, as well as water and fertilizer utilization efficiency during the cyclic aeration subsurface drip irrigation process. Four aeration treatments (O1, O2, O3, and S, representing aeration ratios of 16.25%, 14.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!