The effect of one carbon metabolism on DNA methylation has been well described, bridging nutrition, metabolism, and epigenetics. This modification is mediated by the metabolite S-adenosyl methionine (SAM), which is also the methyl-donating substrate of histone methyltransferases. Therefore, SAM levels that are influenced by several nutrients, enzymes, and metabolic cofactors also have a potential impact on histone methylation. Although this modification plays a major role in chromatin accessibility and subsequently in gene expression in healthy or diseased states, its role in translating nutritional changes in chromatin structure has not been extensively studied. Here, we aim to review the literature of known mechanistic links between histone methylation and the central one carbon metabolism.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6722216 | PMC |
http://dx.doi.org/10.3389/fgene.2019.00764 | DOI Listing |
Plant Physiol Biochem
January 2025
Laboratory of Microbial Genetics, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India. Electronic address:
Nitric oxide synthases (NOSs) are heme-based monooxygenases that catalyze the NADPH-dependent oxidation of L-arginine to produce NO and L-citrulline. Over the past five years, the identification and characterization of NOS homologs in cyanobacteria have significantly advanced our understanding of these enzymes. However, the precise mechanisms through which NOS-derived NO influences nitrogen metabolism remain incompletely elucidated.
View Article and Find Full Text PDFPLoS One
January 2025
College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, China.
Influenced by urban expansion, population growth, and various socio-economic activities, land use in the Yangtze River Delta (YRD) area has undergone prominent changes. Modifications in land use have resulted in adjustments to ecological structures, leading to subsequent fluctuations in carbon storage. This study focuses on YRD region and analyzes the characteristics of land use changes in the area using land use data from 2000 to 2020, with a 10-year interval.
View Article and Find Full Text PDFSci Adv
January 2025
School of GeoSciences, University of Edinburgh, James Hutton Road, Edinburgh EH9 3FE, UK.
Whether metazoan diversification during the Cambrian Radiation was driven by increased marine oxygenation remains highly debated. Repeated global oceanic oxygenation events have been inferred during this interval, but the degree of shallow marine oxygenation and its relationship to biodiversification and clade appearance remain uncertain. To resolve this, we interrogate an interval from ~527 to 519 Ma, encompassing multiple proposed global oceanic oxygenation events.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Clinical Science, SUS, Division of Islet Cell Physiology, University of Lund, Malmö, Sweden.
The impact of islet neuronal nitric oxide synthase (nNOS) on glucose-stimulated insulin secretion (GSIS) is less understood. We investigated this issue by performing simultaneous measurements of the activity of nNOS versus inducible NOS (iNOS) in GSIS using isolated murine islets. Additionally, the significance of extracellular NO on GSIS was studied.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China.
Lignin degradation by biocatalysts is a key strategy to develop a plant-based sustainable carbon economy and thus alleviate global climate change. This process involves synergy between ligninases and auxiliary enzymes. However, auxiliary enzymes within secretomes, which are composed of thousands of enzymes, remain enigmatic, although several ligninolytic enzymes have been well characterized.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!