Anodal-transcranial pulsed current stimulation (a-tPCS) has been used in human studies to modulate cortical excitability or improve behavioral performance in recent years. Multiple studies show crucial roles of astrocytes in cortical plasticity. The calcium activity in astrocytes could regulate synaptic transmission and synaptic plasticity. Whether the astrocytic activity is involved in a-tPCS-induced cortical plasticity is presently unknown. The purpose of this study is to investigate the calcium responses in neurons and astrocytes evoked by a-tPCS with different current intensities, and thereby provides some indication of the mechanisms underlying a-tPCS-induced cortical plasticity. Two-photon calcium imaging was used to record the calcium responses of neurons and astrocytes in mouse somatosensory cortex. Local field potential (LFP) evoked by sensory stimulation was used to assess the effects of a-tPCS on plasticity. We found that long-duration a-tPCS with high-intensity current could evoke large-amplitude calcium responses in both neurons and astrocytes, whereas long-duration a-tPCS with low-intensity current evoked large-amplitude calcium responses only in astrocytes. The astrocytic Ca elevations are driven by noradrenergic-dependent activation of the alpha-1 adrenergic receptors (A1ARs), while the intense Ca responses of neurons are driven by action potentials. LFP recordings demonstrated that low-intensity a-tPCS led to enhancement of cortical excitability while high-intensity a-tPCS resulted in diminution of cortical excitability. The results provide some evidence that the enhancement of a-tPCS-induced cortical excitability might be partly associated with calcium elevation in astrocytes, whereas the diminution of a-tPCS-induced cortical excitability might be caused by excessive calcium activity in neurons. These findings indicate that the appropriate current intensity should be used in the application of a-tPCS.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6727068 | PMC |
http://dx.doi.org/10.3389/fncel.2019.00400 | DOI Listing |
Sci Rep
January 2025
Department of Neurology, Feinberg School of Medicine, Northwestern University, 303 E. Chicago Ave, Chicago, IL, 60611, USA.
Corticospinal motor neurons (CSMN), located in the motor cortex of the brain, are one of the key components of the motor neuron circuitry. They are in part responsible for the initiation and modulation of voluntary movement, and their degeneration is the hallmark for numerous diseases, such as amyotrophic lateral sclerosis (ALS), hereditary spastic paraplegia, and primary lateral sclerosis. Cortical hyperexcitation followed by in-excitability suggests the early involvement of cortical dysfunction in ALS pathology.
View Article and Find Full Text PDFeNeuro
January 2025
Department of Neuroscience, University of Wisconsin-Madison, Madison, WI, 53705
Fragile X autosomal homolog 1 (FXR1), a member of the fragile X messenger riboprotein 1 family, has been linked to psychiatric disorders including autism and schizophrenia. Parvalbumin (PV) interneurons play critical roles in cortical processing, and have been implicated in FXR1-linked mental illnesses. Targeted deletion of FXR1 from PV interneurons in mice has been shown to alter cortical excitability and elicit schizophrenia-like behavior.
View Article and Find Full Text PDFBMJ Open
January 2025
Department of Rehabilitation, Daping Hospital, Army Medical University, Chongqing, China
Introduction: Spasticity is a common complication of stroke, which is related to poor motor recovery and limitations in the performance of activities. Both transcranial magnetic stimulation (TMS) and extracorporeal shockwave therapy (ESWT) are effective treatment methods for poststroke spasticity (PSS). However, there is no existing study exploring the safety and effectiveness of TMS combined with ESWT for PSS.
View Article and Find Full Text PDFCerebellum
January 2025
Department of Neurology, Kailuan General Hospital, No. 57 Xinhua East Road, Lubei District, Tangshan City, 063000, Hebei Province, China.
This study aims to evaluate cognitive impairments in patients with acute cerebellar infarction using event-related potentials (ERP) and electrophysiological source imaging (ESI). Thirty patients with acute cerebellar infarction and 32 healthy volunteers were selected. Cognitive potentials were recorded and measured using a visual Oddball paradigm.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
University of Miami, Miami, FL, USA.
Background: Exposures to hazardous noise causes irreversible injury to the structures of the inner ear, leading to changes in hearing and balance function with strong links to age-related cognitive impairment. While the role of noise-induced hearing loss in long-term health consequences, such as progression or development of Alzheimer's Disease (AD) has been suggested, the underlying mechanisms and behavioral and cognitive outcomes or therapeutic solutions to mitigate these changes remain understudied. This study aimed to characterize the association between blast exposure, hearing loss, and the progression of AD pathology, and determine the underlying mechanisms.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!