This paper presents a methodology, called production system identification, to produce a model of a manufacturing system from logs of the system's operation. The model produced is intended to aid in making production scheduling decisions. Production system identification is similar to machine-learning methods of process mining in that they both use logs of operations. However, process mining falls short of addressing important requirements; process mining does not (1) account for infrequent exceptional events that may provide insight into system capabilities and reliability, (2) offer means to validate the model relative to an understanding of causes, and (3) updated the model as the situation on the production floor changes. The paper describes a genetic programming (GP) methodology that uses Petri nets, probabilistic neural nets, and a causal model of production system dynamics to address these shortcomings. A coloured Petri net formalism appropriate to GP is developed and used to interpret the log. Interpreted logs provide a relation between Petri net states and exceptional system states that can be learned by means of novel formulation of probabilistic neural nets (PNNs). A generalized stochastic Petri net and the PNNs are used to validate the GP-generated solutions. The methodology is evaluated with an example based on an automotive assembly system.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6760331PMC
http://dx.doi.org/10.1016/j.jmsy.2018.04.006DOI Listing

Publication Analysis

Top Keywords

production system
16
system identification
12
process mining
12
petri net
12
system
8
probabilistic neural
8
neural nets
8
production
5
model
5
dynamic production
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!