Electrodes with low work functions are required to efficiently inject electrons into semiconductor devices. However, when the work function drops below about 4 electronvolts, the electrode suffers oxidation in air, which prevents its fabrication in ambient conditions. Here we show that multivalent anions such as oxalate, carbonate and sulfite can act as powerful latent electron donors when dispersed as small ion clusters in a matrix, while retaining their ability to be processed in solution in ambient conditions. The anions in these clusters can even n-dope the semiconductor core of π-conjugated polyelectrolytes that have low electron affinities, through a ground-state doping mechanism that is further amplified by a hole-sensitized or photosensitized mechanism in the device. A theoretical analysis of donor levels of these anions reveals that they are favourably upshifted from ionic lattices by a decrease in the Coulomb stabilization of small ion clusters, and by irreversibility effects. We attain an ultralow effective work function of 2.4 electronvolts with the polyfluorene core. We realize high-performance, solution-processed, white-light-emitting diodes and organic solar cells using polymer electron injection layers with these universal anion donors, demonstrating a general approach to chemically designed and ambient-processed Ohmic electron contacts for semiconductor devices.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41586-019-1575-7DOI Listing

Publication Analysis

Top Keywords

multivalent anions
8
latent electron
8
electron donors
8
semiconductor devices
8
work function
8
ambient conditions
8
small ion
8
ion clusters
8
electron
5
anions universal
4

Similar Publications

Background: Recombinant Necator americanus Glutathione-S-Transferase-1 (Na-GST-1) formulated on Alhydrogel (Na-GST-1/Alhydrogel) is being developed to prevent anemia and other complications of N. americanus infection. Antibodies induced by vaccination with recombinant Na-GST-1 are hypothesized to interfere with the blood digestion pathway of adult hookworms in the host.

View Article and Find Full Text PDF

Counterintuitive DNA destabilization by monovalent salt at high concentrations due to overcharging.

Nat Commun

January 2025

Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China.

Monovalent salts are generally believed to stabilize DNA duplex by weakening inter-strand electrostatic repulsion. Unexpectedly, our force-induced hairpin unzipping experiments and thermal melting experiments show that LiCl, NaCl, KCl, RbCl, and CsCl at concentrations beyond ~1 M destabilize DNA, RNA, and RNA-DNA duplexes. The two types of experiments yield different changes in free energy during melting, while the results that high concentration monovalent salts destabilize duplexes are common.

View Article and Find Full Text PDF

Rapid and reversible sodium-ion cathode materials for NASICON NaMnTiPBO achieved through Boron-substitution.

J Colloid Interface Sci

December 2024

School of Materials Science and Engineering, State Key Lab of Silicon and Advanced, Semiconductor Materials, Zhejiang University, Hangzhou 310027, PR China. Electronic address:

NaMnTi(PO) is a promising sodium-ion cathode material due to its relatively high specific capacity, excellent thermodynamic stability and low cost. However, unfavorable electron conductivity and slow kinetics limit its practical application. Here, a strategy of hetero and multivalent anion substitution is proposed to achieve high-rate performance and good capacity retention.

View Article and Find Full Text PDF

An empirical equation relating electrophoretic mobility and ionic strength was proposed. The equation includes a number of parameters that are found using the mobilities of reference ions: two coefficients in the numerator describing the linear relationship of the multiplier in front of the square root of the ionic strength with the product of the ion mobility in the background electrolyte (BGE) without additives by the modulus of the charge number, raised to a certain power, and also the multiplier in the denominator before the square root of the ionic strength. The proposed equation was tested using the mobilities measured in BGEs with the addition of sodium chloride to adjust ionic strength and sulfated β-cyclodextrin (S-β-CD) for 11 anions with charge numbers from -1 to -4.

View Article and Find Full Text PDF

Self-assembly of proteins and polyelectrolytes in aqueous solutions is a promising approach for the development of advanced biotherapeutics and engineering efficient biotechnological processes. Synthetic polyions containing sterically repulsive ethylene oxide moieties are especially attractive as protein modifying agents, as they can potentially induce a PEGylation-like stabilizing effect without the need for complex covalent binding reactions. In this study, we investigated the protein-binding properties of anionic polyelectrolytes based on an inorganic polyphosphazene backbone, with ethylene oxide groups incorporated into both grafted and linear macromolecular topologies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!