Streptococcus thermophilus is a lactic acid bacterium widely used by the dairy industry for the manufacture of yogurt and specialty cheeses. It is also a Gram-positive bacterial model to study phage-host interactions. CRISPR-Cas systems are one of the most prevalent phage resistance mechanisms in S. thermophilus. Little information is available about other host factors involved in phage replication in this food-grade streptococcal species. We used the model strain S. thermophilus SMQ-301 and its virulent phage DT1, harboring the anti-CRISPR protein AcrIIA6, to show that a host gene coding for a methionine aminopeptidase (metAP) is necessary for phage DT1 to complete its lytic cycle. A single mutation in metAP provides S. thermophilus SMQ-301 with strong resistance against phage DT1. The mutation impedes a late step of the lytic cycle since phage adsorption, DNA replication, and protein expression were not affected. When the mutated strain was complemented with the wild-type version of the gene, the phage sensitivity phenotype was restored. When this mutation was introduced into other S. thermophilus strains it provided resistance against cos-type (Sfi21dt1virus genus) phages but replication of pac-type (Sfi11virus genus) phages was not affected. The mutation in the gene coding for the MetAP induces amino acid change in a catalytic domain conserved across many bacterial species. Introducing the same mutation in Streptococcus mutans also provided a phage resistance phenotype, suggesting the wide-ranging importance of the host methionine aminopeptidase in phage replication.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6761271PMC
http://dx.doi.org/10.1038/s41598-019-49975-4DOI Listing

Publication Analysis

Top Keywords

methionine aminopeptidase
12
phage resistance
12
phage dt1
12
phage
10
gene phage
8
streptococcus thermophilus
8
phage replication
8
thermophilus smq-301
8
gene coding
8
lytic cycle
8

Similar Publications

Article Synopsis
  • FD is a significant grapevine disease in Europe, particularly affecting Tuscany, where recent surveys found about 50% of tested samples showed positive for the FD phytoplasma (FDp).
  • The study revealed a complex ecology of FDp, with its presence noted in both primary hosts (VV and ST) and secondary vectors (DE) and hosts (AG and CV).
  • Nine different strains of FDp were identified, including three new ones, with phylogenetic analyses indicating links between Tuscan strains and those found in the Balkans and France, which could aid in management efforts to control the disease’s spread.
View Article and Find Full Text PDF

Naphthoquinones eleutherin and isoeleutherin have demonstrated promising antibacterial activity, probably due to their quinone structure, which can generate reactive oxygen species. The study examines the activities of pathogens, such as and , associated with antimicrobial resistance and explores their potential mechanisms of action. The MIC, IC, and MBC were determined.

View Article and Find Full Text PDF

Recent years have witnessed notable breakthroughs in the field of biotherapeutics. Proteolysis Targeting Chimeras (PROTACs) are novel molecules which used to degrade particular proteins despite the blockage by small drug molecules, which leads to a predicted therapeutic activity. This is a unique finding, especially at the cellular level targets degradations.

View Article and Find Full Text PDF

Nosemosis is one of the most devastating diseases of Apis mellifera (Honey bees) caused by the single-celled spore-forming fungi Nosema apis, N. ceranae and N. neumanii, causing a severe loss on the colony vitality and productivity.

View Article and Find Full Text PDF

Within a cell, protein-bound methionines can be chemically or enzymatically oxidized, and subsequently reduced by methionine sulfoxide reductases (Msrs). Methionine oxidation can result in structural damage or be the basis of functional regulation of enzymes. In addition to participating in redox reactions, methionines play an important role as the initiator residue of translated proteins where they are commonly modified at their α-amine group by formylation or acetylation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!