AI Article Synopsis

  • The study focuses on enhancing the reference genome for a specific annual species within the Brassicaceae family, which helps in understanding genome and trait evolution in related crops like Brassica.
  • The improved reference genome (version 3.0) was achieved by integrating advanced sequencing technologies (PacBio and MinION) and a genetic map created from two ecotypes (Cyprus and Turkey), leading to a significant increase in sequence quality and coverage.
  • A high-density genetic map was developed, refining the reference genome into 11 linkage groups and demonstrating the effectiveness of combining long-read sequencing with genetics for better genome assembly.

Article Abstract

The genus is a sister-group to the core-group of the Brassicaceae family that includes and the Brassica crops. Thus, is phylogenetically well-placed for the investigation and understanding of genome and trait evolution across the family. We aimed to improve the quality of the reference genome draft version of the annual species Second, we constructed the first genetic map. The improved reference genome and genetic map enabled the development of each other. We started with the initially published genome (version 2.5). PacBio and MinION sequencing together with genetic map v2.5 were incorporated to produce the new reference genome v3.0. The improved genome contains 203 MB of sequence, with approximately 94% of the assembly made up of called (non-gap) bases, assembled into 2,883 scaffolds (with only 6% of the genome made up of non-called bases (Ns)). The N (10.3 MB) represents an 80-fold increase over the initial genome release. We generated a Recombinant Inbred Line (RIL) population that was derived from two ecotypes: Cyprus and Turkey (the reference genotype. Using a Genotyping by Sequencing (GBS) approach, we generated a high-density genetic map with 749 (v2.5) and then 632 SNPs (v3.0) was generated. The genetic map and reference genome were integrated, thus greatly improving the scaffolding of the reference genome into 11 linkage groups. We show that long-read sequencing data and genetics are complementary, resulting in an improved genome assembly in They will facilitate comparative genetic mapping work for the Brassicaceae family and are also valuable resources to investigate wide range of life history traits in .

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6829135PMC
http://dx.doi.org/10.1534/g3.119.400657DOI Listing

Publication Analysis

Top Keywords

genetic map
24
reference genome
20
genome
12
brassicaceae family
12
improved genome
8
genetic
7
map
6
reference
6
genome improvement
4
improvement genetic
4

Similar Publications

Retinal pigment epithelial (RPE) cells undergoing epithelial‑mesenchymal transition (EMT) are a key factor in promoting the progression of subretinal fibrosis. The klotho protein and gene exert anti‑fibrotic effects in multiple fibrotic diseases. However, the mechanisms involved in the role of klotho are unclear in subretinal fibrosis.

View Article and Find Full Text PDF

LOGOWheat: deep learning-based prediction of regulatory effects for noncoding variants in wheats.

Brief Bioinform

November 2024

Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, No. 97 Buxin Road, Dapeng New District, Shenzhen 518124, China.

Identifying the regulatory effects of noncoding variants presents a significant challenge. Recently, the accumulation of epigenomic profiling data in wheat has provided an opportunity to model the functional impacts of these variants. In this study, we introduce Language of Genome for Wheat (LOGOWheat), a deep learning-based tool designed to predict the regulatory effects of noncoding variants in wheat.

View Article and Find Full Text PDF

TREM2 is a signaling receptor expressed on microglia that has emerged as an important drug target for Alzheimer's disease and other neurodegenerative diseases. While a number of TREM2 ligands have been identified, little is known regarding the structural details of how they engage. To better understand this, we created a protein library of 28 different TREM2 variants that could be used to map interactions with various ligands using biolayer interferometry.

View Article and Find Full Text PDF

The short-chain fatty acids (SCFAs) propionate and butyrate have beneficial health effects, are produced in large amounts by microbial metabolism and have been identified as unique acyl lysine histone marks. To better understand the function of these modifications, we used chromatin immunoprecipitation followed by sequencing to map the genome-wide location of four short-chain acyl histone marks, H3K18pr, H3K18bu, H4K12pr and H4K12bu, in treated and untreated colorectal cancer (CRC) and normal cells as well as in mouse intestines in vivo. We correlate these marks with open chromatin regions and gene expression to access the function of the target regions.

View Article and Find Full Text PDF

Epigenetics and individuality: from concepts to causality across timescales.

Nat Rev Genet

January 2025

Institute of Ecology and Evolution, University of Oregon, Eugene, OR, USA.

Traditionally, differences among individuals have been divided into genetic and environmental causes. However, both types of variation can underlie regulatory changes in gene expression - that is, epigenetic changes - that persist across cell divisions (developmental differentiation) and even across generations (transgenerational inheritance). Increasingly, epigenetic variation among individuals is recognized as an important factor in human diseases and ageing.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!