Total Synthesis of Viridin and Viridiol.

J Am Chem Soc

Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering , East China Normal University, 3663N Zhongshan Road , Shanghai 200062 , China.

Published: October 2019

The asymmetric total synthesis of (-)-viridin and (-)-viridiol, antifungal metabolites, was achieved in 17 and 18 steps from a commercially available starting material. An intramolecular [3+2] cycloaddition was applied to an easily available -ribose derivative in order to construct the highly substituted D ring containing the key chiral -triol fragment. Co-catalyzed metal-hydride H atom transfer (MHAT) radical cyclization was utilized to form the C-ring and the all-carbon quaternary center at C-10. This convergent strategy provides a scalable approach to prepare viridin and viridiol for biological studies.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jacs.9b08577DOI Listing

Publication Analysis

Top Keywords

total synthesis
8
viridin viridiol
8
synthesis viridin
4
viridiol asymmetric
4
asymmetric total
4
synthesis --viridin
4
--viridin --viridiol
4
--viridiol antifungal
4
antifungal metabolites
4
metabolites achieved
4

Similar Publications

Aerobic exercise attenuates high-fat diet-induced glycometabolism impairments in skeletal muscle of rat: role of EGR-1/PTP1B signaling pathway.

Nutr Metab (Lond)

December 2024

College of Physical Education and Health Sciences, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, Zhejiang Province, China.

Objective: Impaired skeletal muscle glycogen synthesis contributes to insulin resistance (IR). Aerobic exercise reported to ameliorate IR by augmenting insulin signaling, however the detailed mechanism behind this improvement remains unclear. This study investigated whether aerobic exercise enhances glycogen anabolism and insulin sensitivity via EGR-1/PTP1B signaling pathway in skeletal muscle of rats.

View Article and Find Full Text PDF

Zinc finger proteins facilitate adaptation of a global insect pest to climate change.

BMC Biol

December 2024

State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.

Background: Global climate change significantly impacts ecosystems, particularly through temperature fluctuations that affect insect physiology and behavior. As poikilotherms, insect pests such as the globally devastating diamondback moth (DBM), Plutella xylostella, are especially vulnerable to rising temperatures and extreme heat events, necessitating effective adaptive mechanisms.

Results: Here we demonstrate the roles of zinc finger proteins (ZFPs) in mediating thermal adaptability in DBM.

View Article and Find Full Text PDF

Background/aim: Imeglimin, a novel oral antidiabetic agent, was approved in 2021 for the treatment of type 2 diabetes mellitus (T2DM). Phase III clinical trials demonstrated its safety and efficacy in managing T2DM. However, its safety profile in patients with heart failure has not been thoroughly evaluated in real-world clinical settings.

View Article and Find Full Text PDF

Background/aim: Body weight loss (BWL) after gastrectomy for gastric cancer (GC) decreases postoperative quality of life and survival in patients with GC. This study aimed to evaluate the effect of oral nutritional supplements composed of high protein on BWL in the early period following gastrectomy.

Patients And Methods: Pre- and postoperative body weight and skeletal muscle mass were measured using bioelectrical impedance analysis in patients undergoing radical gastrectomy for GC and analyzed retrospectively.

View Article and Find Full Text PDF

Canine Stem Cell-derived Exosomes for Lung Inflammation: Efficacy of Intratracheal Intravenous Administration in an Acute Lung Injury Mouse Model.

In Vivo

December 2024

Department of Veterinary Emergency and Critical Care Medicine, College of Veterinary Medicine, Kangwon National University, Chuncheon, Republic of Korea

Background/aim: Acute lung injury (ALI) is an important pathological process in acute respiratory distress syndrome; however, feasible and effective treatment strategies for ALI are limited. Recent studies have suggested that stem cell-derived exosomes can ameliorate ALI; however, there remains no consensus on the protocols used, including the route of administration. This study aimed to identify the appropriate route of administration of canine stem cell-derived exosomes (cSC-Exos) in ALI.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!