Design and Manipulation of Ferroic Domains in Complex Oxide Heterostructures.

Materials (Basel)

Department of Materials, ETH Zurich, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland.

Published: September 2019

The current burst of device concepts based on nanoscale domain-control in magnetically and electrically ordered systems motivates us to review the recent development in the design of domain engineered oxide heterostructures. The improved ability to design and control advanced ferroic domain architectures came hand in hand with major advances in investigation capacity of nanoscale ferroic states. The new avenues offered by prototypical multiferroic materials, in which electric and magnetic orders coexist, are expanding beyond the canonical low-energy-consuming electrical control of a net magnetization. Domain pattern inversion, for instance, holds promises of increased functionalities. In this review, we first describe the recent development in the creation of controlled ferroelectric and multiferroic domain architectures in thin films and multilayers. We then present techniques for probing the domain state with a particular focus on non-invasive tools allowing the determination of buried ferroic states. Finally, we discuss the switching events and their domain analysis, providing critical insight into the evolution of device concepts involving multiferroic thin films and heterostructures.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6803956PMC
http://dx.doi.org/10.3390/ma12193108DOI Listing

Publication Analysis

Top Keywords

oxide heterostructures
8
device concepts
8
domain architectures
8
ferroic states
8
thin films
8
domain
6
design manipulation
4
ferroic
4
manipulation ferroic
4
ferroic domains
4

Similar Publications

We demonstrate low energy, forming and compliance-free operation of a resistive memory obtained by the partial oxidation of a two-dimensional layered van-der-Waals semiconductor: hafnium disulfide (HfS). Semiconductor-oxide heterostructures are achieved by low temperature (<300 °C) thermal oxidation of HfS under dry conditions, carefully controlling process parameters. The resulting HfOS/HfS heterostructures are integrated between metal contacts, forming vertical crossbar devices.

View Article and Find Full Text PDF

Rational design of heterostructure (HS)-based surface acoustic wave (SAW) smart gas sensors for efficient and accurate subppm level ammonia (NH) detection at room temperature (RT) is of great significance in environmental protection and human safety. This study introduced a novel HS composed of an AlN-based SAW resonator and CuO nanoparticles (NPs) as a chemical interface for NH detection at RT (∼26 °C). The structural, morphological, and chemical compositions were detailly investigated, which demonstrates that the CuO/AlN HS was successfully formed via interfacial modulation.

View Article and Find Full Text PDF

Portable paper-based microfluidic devices based on CuS@AgS nanocomposites for colorimetric/electrochemical dual-mode detection of dopamine.

Biosens Bioelectron

January 2025

Centre for Advanced Optoelectronic Functional Materials Research and Key Laboratory of UV Light-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 130024, Changchun, China. Electronic address:

The development of integrated multiple signal outputs within a single platform is highly significant for efficient and accurate on-site biomarker detection. Herein, colorimetric/electrochemical dual-mode microfluidic paper-based analytical devices (μPADs) were designed for portable, visual and accurate dopamine (DA) detection. The dual-mode μPADs, featuring folded structure, integrate a colorimetric layer and an electrochemical layer using wax printing and laser-induced graphene (LIG) pyrolysis techniques, allowing the vertical flow of analyte solution.

View Article and Find Full Text PDF

The human visual nervous system excels at recognizing and processing external stimuli, essential for various physiological functions. Biomimetic visual systems leverage biological synapse properties to improve memory encoding and perception. Optoelectronic devices mimicking these synapses can enhance wearable electronics, with layered heterojunction materials being ideal materials for optoelectronic synapses due to their tunable properties and biocompatibility.

View Article and Find Full Text PDF

Layered VO·6HO is a promising candidate for aqueous zinc batteries (AZBs) but with moderate electrochemical performances. Herein, the charge storage properties of VO·6HO are markedly improved by building up the heterointerface on its surface using amorphous molybdenum trioxide as the heteromaterial. The amorphous molybdenum trioxide functioning as the proton reservoir enables the proton-involved electrochemical reactions and induces the formation of a built-in electric field along the [001] orientation at the heterointerface constructed by the (001) plane of VO·6HO, which could provide new diffusion pathways and extra sites for ion storage.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!