A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Potential of benzophenones and flavanones to modulate the bitter intensity of Cyclopia genistoides herbal tea. | LitMetric

Potential of benzophenones and flavanones to modulate the bitter intensity of Cyclopia genistoides herbal tea.

Food Res Int

Plant Bioactives Group, Post-Harvest and Agro-Processing Technologies, Agricultural Research Council (ARC), Infruitec-Nietvoorbij, Private Bag X5026, Stellenbosch 7599, South Africa; Department of Food Science, Stellenbosch University, Private Bag X1 Matieland, Stellenbosch 7602, South Africa. Electronic address:

Published: November 2019

Variation in the bitter taste of Cyclopia genistoides (honeybush) herbal tea and reported modulation between its major xanthones, mangiferin and isomangiferin, prompted further investigation into the potential modulatory effects of honeybush phenolics. Combinations of crude benzophenone (BF)-, xanthone (XF)-, and flavanone (FF)-rich fractions and their major individual phenolic compounds were analysed by descriptive sensory analysis. The fractions were prepared from a bitter, hot water extract of green C. genistoides. Fraction BF, which is below the bitter threshold (intensity 10 on 100-point scale), enhanced the bitter intensity of XF and FF slightly (p < 0.05), although none of the major individual benzophenones retained this bitter enhancing effect. On the contrary, 3-β-d-glucopyranosyl-4-β-d-glucopyranosyloxyiriflophenone, the major benzophenone in BF, significantly (p < 0.05) decreased the bitter taste of XF, at a low concentration, whereas FF suppressed the bitter intensity of XF and mangiferin, the major xanthone present in XF. Hesperidin, however, had no effect on the bitter intensity of XF. In contrast, (2S)-5-[α-L-rhamnopyranosyl-(1→2)-β-d-glucopyranosyloxy]-naringenin, the major compound of FF, significantly (p < 0.05) enhanced the bitter taste of XF when added at concentrations comparable to that of 'fermented' honeybush tea infusions. The concentration-dependence of these bitter taste interactions may be responsible for the variable bitter intensity of C. genistoides herbal tea.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.foodres.2019.108519DOI Listing

Publication Analysis

Top Keywords

bitter intensity
8
cyclopia genistoides
8
herbal tea
8
bitter
5
potential benzophenones
4
benzophenones flavanones
4
flavanones modulate
4
modulate bitter
4
intensity cyclopia
4
genistoides herbal
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!