Nutrient starvation and inactivation of target of rapamycin complex 1 (TORC1) protein kinase induce nucleophagy preferentially degrading only nucleolar components in budding yeast. Nucleolar proteins are relocated to sites proximal to the nucleus-vacuole junction (NVJ), where micronucleophagy occurs, whereas rDNA, which is embedded in the nucleolus under normal conditions, moves to NVJ-distal regions, causing rDNA dissociation from nucleolar proteins after TORC1 inactivation. This repositioning is mediated via chromosome linkage INM protein (CLIP)-cohibin complexes that tether rDNA to the inner nuclear membrane. Here, we show that TORC1 inactivation-induced rDNA condensation promotes the repositioning of rDNA and nucleolar proteins. Defects in condensin, Rpd3-Sin3 histone deacetylase (HDAC), and high-mobility group protein 1 (Hmo1), which are involved in TORC1 inactivation-induced rDNA condensation, compromised the repositioning and nucleophagic degradation of nucleolar proteins, although rDNA still escaped from nucleophagic degradation in these mutants. We propose a model in which rDNA condensation after TORC1 inactivation generates a motive force for the repositioning of rDNA and nucleolar proteins.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.celrep.2019.08.059 | DOI Listing |
Hum Exp Toxicol
January 2025
Department of Gynecology and Obstetrics, Fuyong People's Hospital, Shenzhen, China.
Gestational diabetes mellitus (GDM) is a metabolic disorder that arises during pregnancy and heightens the risk of placental dysplasia. Ginsenoside Re (Re) may stabilize insulin and glucagon to regulate glucose levels, which may improve diabetes-associated diseases. This study aims to investigate the mechanism of Re in high glucose (HG)-induced apoptosis of trophoblasts through endoplasmic reticulum stress (ERS)-related protein CHOP/GADD153.
View Article and Find Full Text PDFCell Biol Toxicol
January 2025
Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang , Liaoning Province, China.
NFKB1, a core transcription factor critical in various biological process (BP), is increasingly studied for its role in tumors. This research combines literature reviews, meta-analyses, and bioinformatics to systematically explore NFKB1's involvement in tumor initiation and progression. A unique focus is placed on the NFKB1-94 ATTG promoter polymorphism, highlighting its association with cancer risk across diverse genetic models and ethnic groups, alongside comprehensive analysis of pan-cancer expression patterns and drug sensitivity.
View Article and Find Full Text PDFMol Pharm
January 2025
Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska St., 90-236 Lodz, Poland.
Dendrimers are a wide range of nanoparticles with desirable properties that can be used in many areas of medicine. However, little is known about their potential use in wound healing. This study examined the properties of phosphorus dendrimers that were built on a cyclotriphosphazene core and pyrrolidinium (DPP) or piperidinium (DPH) terminated groups, to be used as potential factors that support wound healing ().
View Article and Find Full Text PDFMol Pharm
January 2025
Department of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
Acute myocardial infarction (MI) remains a leading cause of mortality worldwide, with inflammatory and reparative phases playing critical roles in disease progression. Currently, there is a pressing need for imaging techniques to monitor immune cell infiltration and inflammation activity during these phases. We developed a novel probe, Tc-HYNIC-mAb, utilizing a monoclonal antibody that targets the voltage-gated potassium channel 1.
View Article and Find Full Text PDFInt J Rheum Dis
January 2025
The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China.
Background: N6-methyladenosine (m6A) is one of the most conserved internal RNA modifications, which has been implicated in many biological processes, such as apoptosis and proliferation. Wilms tumor 1-associating protein (WTAP), as a key component of m6A methylation, is a nuclear protein that has been associated with the regulation of proliferation and apoptosis. Rheumatoid arthritis (RA), a systemic, infiltrating autoimmune disease, is characterized by synovial hyperplasia.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!