We disclose the results of an investigation designed to generate insight regarding the differences in the electronic and steric attributes of C-F, C-Cl, and C-Br bonds. Mechanistic insight has been gleaned by analysis of variations in enantioselectivity, regarding the ability of electrostatic contact between a halomethyl moiety and a catalyst's ammonium group as opposed to factors lowering steric repulsion and/or dipole minimization. In the process, catalytic and enantioselective methods have been developed for transforming a wide range of trihalomethyl (halogen = Cl or Br), dihalomethyl, or monohalomethyl (halogen = F, Cl, or Br) ketones to the corresponding tertiary homoallylic alcohols. By exploiting electrostatic attraction between a halomethyl moiety and the catalyst's ammonium moiety and steric factors, high enantioselectivity was attained in many instances. Reactions can be performed with 0.5-5.0 mol % of an in situ generated boryl-ammonium catalyst, affording products in 42-99% yield and up to >99:1 enantiomeric ratio. Not only are there no existing protocols for accessing the great majority of the resulting products enantioselectively but also in some cases there are hardly any instances of a catalytic enantioselective addition of a carbon-based nucleophile (e.g., one enzyme-catalyzed aldol addition involving trichloromethyl ketones, and none with dichloromethyl, tribromomethyl, or dibromomethyl ketones). The approach is scalable and offers an expeditious route to the enantioselective synthesis of versatile and otherwise difficult to access aldehydes that bear an α-halo-substituted quaternary carbon stereogenic center as well as an assortment of 2,2-disubstituted epoxides that contain an easily modifiable alkene. Tertiary homoallylic alcohols containing a triazole and a halomethyl moiety, structural units relevant to drug development, may also be accessed efficiently with exceptional enantioselectivity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6939393PMC
http://dx.doi.org/10.1021/jacs.9b08443DOI Listing

Publication Analysis

Top Keywords

catalytic enantioselective
12
halomethyl moiety
12
enantioselective addition
8
electronic steric
8
steric attributes
8
c-cl c-br
8
moiety catalyst's
8
catalyst's ammonium
8
tertiary homoallylic
8
homoallylic alcohols
8

Similar Publications

Enantioselective construction of silicon-stereogenic vinylsilanes from simple alkenes.

Nat Commun

January 2025

State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, Nankai University 94 Weijin Road, Tianjin, China.

The diverse utility of acyclic vinylsilanes has driven the interest in the synthesis of enantioenriched vinylsilanes bearing a Si-stereogenic center. However, the predominant approaches for catalytic asymmetric generation of Si-stereogenic vinylsilanes have mainly relied on transition metal-catalyzed reactions of alkynes with different silicon sources. Here we successfully realize the enantioselective synthesis of linear silicon-stereogenic vinylsilanes with good yields and enantiomeric ratios from simple alkenes under rhodium catalysis.

View Article and Find Full Text PDF

A C-H Arylation-Based Enantioselective Synthesis of Planar Chiral Cyclophanes.

Angew Chem Int Ed Engl

January 2025

University of Basel, Department of Chemistry, St. Johanns-Ring 19, 4056, Basel, SWITZERLAND.

Despite the growing importance of planar chiral macrocyclophanes owing to their unique properties in different areas of chemistry, methods that are effective in controlling their planar chirality are restricted to certain molecular scaffolds. Herein, we report the first Pd(0)-catalyzed enantioselective intermolecular C-H arylation that induces planar chirality by installing bulky aryl groups through dynamic kinetic resolution (DKR). A computer-assisted approach allowed a fine-tuning of the structure of the employed chiral bifunctional phosphine-carboxylate ligands to achieve high enantioselectivities.

View Article and Find Full Text PDF

Taming highly enolizable aldehydes for catalytic asymmetric C-C coupling with nucleophiles remains an elusive challenge compared to widely explored simple alkyl or aryl aldehydes. Herein, we use ThDP-dependent enzymes to realize the direct C-C coupling of highly enolizable 2-phosphonate aldehydes with in situ-generated dynamically reversible nucleophiles (acyl anions). Unlike NHC-mediated reactions that yield complex mixtures of multiple adducts, our enzymatic process selectively produces biologically active β-hydroxy phosphonates with high yields (up to 95%) and excellent enantioselectivities (up to 99% ee).

View Article and Find Full Text PDF

This work introduces a novel Mn(I)-catalyzed enantioselective alkylation methodology that efficiently produces a wide array of P-chiral phosphines with outstanding yields and enantioselectivities. Notably, the exceptional reactivity of Mn(I) complexes in these reactions is demonstrated by their effective catalysis with both typically reactive alkyl iodides and bromides, as well as with less reactive alkyl chlorides. This approach broadens the accessibility to various P-chiral phosphines and simplifies the synthesis of chiral tridentate pincer phosphines to a concise 1-2 step process, contrary to conventional, labor-intensive multistep procedures.

View Article and Find Full Text PDF

Structure-guided mining of stereoselective reductive aminases for biocatalytic stereodivergent synthesis of chiral piperidinamine and derivatives.

J Biotechnol

January 2025

Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China; The Research Center of Chiral Drugs, Shanghai Frontiers Science Center for TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China. Electronic address:

Chiral azacyclic amine derivatives occupy a vital role of nitrogen-containing compounds, due to serve as foundational motifs in numerous pharmaceuticals and bioactive substances. Novel complementary enantioselective reductive aminases IRED9 and IRED11 were unveiled through comprehensive gene mining from Streptomyces viridochromogenes and Micromonospora echinaurantiaca, respectively, which both demonstrated enantiomeric excess (ee) values and conversion ratio up to 99% towards N-Boc-3-pyridinone (NBPO) and cyclopropylamine. IRED9 exhibited the highest activity at pH 8.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!