Ethanol extract from ameliorates dopaminergic neuronal cell death in transgenic mice expressing mutant A53T human alpha-synuclein.

Neural Regen Res

Department of Pharmacy, College of Pharmacy; Research Center for Bioresource and Health, College of Pharmacy, Chungbuk National University, Cheongju, Republic of Korea.

Published: February 2020

AI Article Synopsis

  • Gynostemma pentaphyllum contains bioactive gypenosides that show potential in protecting dopaminergic neurons from cell death in animal models of Parkinson's disease (PD).
  • Oral administration of an ethanol extract from G. pentaphyllum (GP-EX) improved neurological function and reduced harmful effects of α-synuclein overexpression in transgenic mouse models designed to study PD.
  • The study suggests that GP-EX could be a promising treatment for neuronal degeneration associated with PD, and further research is warranted to confirm its efficacy.

Article Abstract

Gynostemma (G.) pentaphyllum (Cucurbitaceae) contains various bioactive gypenosides. Ethanol extract from G. pentaphyllum (GP-EX) has been shown to have ameliorative effects on the death of dopaminergic neurons in animal models of Parkinson's disease (PD) induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine- and 6-hydroxydopamine. PD patients exhibit multiple symptoms, so PD-related research should combine neurotoxin models with genetic models. In the present study, we investigated the ameliorative effects of GP-EX, including gypenosides, on the cell death of dopaminergic neurons in the midbrain of A53T α-synuclein transgenic mouse models of PD (A53T). Both GP-EX and gypenosides at 50 mg/kg per day were orally administered to the A53T mice for 20 weeks. α-Synuclein-immunopositive cells and α-synuclein phosphorylation were increased in the midbrain of A53T mice, which was reduced following treatment with GP-EX. Treatment with GP-EX modulated the reduced phosphorylation of tyrosine hydroxylase, extracellular signal-regulated kinase (ERK1/2), Bcl-2-associated death promoter (Bad) at Ser112, and c-Jun N-terminal kinase (JNK1/2) due to α-synuclein overexpression. In the A53T group, GP-EX treatment prolonged the latency of the step-through passive avoidance test and shortened the transfer latency of the elevated plus maze test. Gypenosides treatment exhibited the effects and efficacy similar to those of GP-EX. Taken together, GP-EX, including gypenosides, has ameliorative effects on dopaminergic neuronal cell death due to the overexpression of α-synuclein by modulating ERK1/2, Bad at Ser112, and JNK1/2 signaling in the midbrain of A53T mouse model of PD. Further studies are needed to investigate GP-EX as a treatment for neurodegenerative synucleinopathies, including PD. This study was approved by the Animal Ethics Committee of Chungbuk National University (approval No. CBNUA-956-16-01) on September 21, 2016.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6905327PMC
http://dx.doi.org/10.4103/1673-5374.265557DOI Listing

Publication Analysis

Top Keywords

cell death
12
ameliorative effects
12
midbrain a53t
12
gp-ex treatment
12
gp-ex
9
ethanol extract
8
dopaminergic neuronal
8
neuronal cell
8
death dopaminergic
8
dopaminergic neurons
8

Similar Publications

Objective: Blood urea nitrogen (BUN) is a commonly used biomarker for assessing kidney function and neuroendocrine activity. Previous studies have indicated that elevated BUN levels are associated with increased mortality in various critically ill patient populations. The focus of this study was to investigate the relationship between BUN and 28-day mortality in intensive care patients.

View Article and Find Full Text PDF

Anti-programmed cell death 1 (PD-1) monoclonal antibodies (mAbs) have proven to be effective in treating various cancers, including colorectal, lung, and melanoma. Despite their clinical success, some patients develop resistance to mAbs, requiring co-treatments with radio- or chemotherapy. Interleukin-15 (IL-15) is an immunostimulatory cytokine that promotes immune cell production and proliferation.

View Article and Find Full Text PDF

LIN28B-mediated PI3K/AKT pathway activation promotes metastasis in colorectal cancer models.

J Clin Invest

January 2025

Herbert Irving Comprehensive Cancer Center, Division of Digestive and Liver, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, United States of America.

Colorectal cancer (CRC) remains a leading cause of cancer death due to metastatic spread. LIN28B is overexpressed in 30% of CRCs and promotes metastasis, yet its mechanisms remain unclear. In this study, we genetically modified CRC cell lines to overexpress LIN28B, resulting in enhanced PI3K/AKT pathway activation and liver metastasis in mice.

View Article and Find Full Text PDF

Unusual Iron-Independent Ferroptosis-like Cell Death Induced by Photoactivation of a Typical Iridium Complex for Hypoxia Photodynamic Therapy.

ACS Appl Mater Interfaces

January 2025

State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P.R. China.

Ferroptosis is a unique cell death mode that relies on iron and lipid peroxidation (LPO) and is extensively utilized to treat drug-resistant tumor. However, like the other antitumor model, requirement of oxygen limited its application in treating the malignant tumors in anaerobic environments, just as photodynamic therapy, a very promising anticancer therapy. Here, we show that an iridium(III) complex (Ir-dF), which was often used in proton-coupled electron transport (PCET) process, can induce efficient cell death upon photo irradiation, which can be effectively protected by the typical ferroptosis inhibitor Fer-1 but not by the classic iron chelating agents and ROS scavengers.

View Article and Find Full Text PDF

Background: BERIL-1 was a randomized phase 2 study that studied paclitaxel with either buparlisib, a pan-class I PIK3 inhibitor, or placebo in patients with recurrent or metastatic (R/M) head and neck squamous cell cancer (HNSCC). Considering the therapeutic paradigm shift with immune checkpoint inhibitors (ICIs) now approved in the first-line setting, we present an updated immunogenomic analysis of patients enrolled in BERIL-1, including patients with immune-infiltrated tumors.

Objective: The objective of this study was to identify biomarkers predictive of treatment efficacy in the context of the post-ICI therapeutic landscape.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!