Immunostaining of the Embryonic and Larval Drosophila Brain.

Methods Mol Biol

Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.

Published: November 2020

Immunostaining is used to visualize the spatiotemporal expression pattern of developmental control genes that regulate the genesis and specification of the embryonic and larval brain of Drosophila. It is also used to visualize the effects of targeted misexpression or inactivation of disease-related genes. Immunostaining uses specific antibodies to mark expressed proteins and allows their localization to be traced. This method reveals insights into gene regulation, cell type specification, neuron and glial differentiation, axonal and synaptic scaffolding and posttranslational protein modifications underlying the patterning and specification of the maturing brain. Depending on the targeted protein, it is possible to visualize a multitude of regions of the Drosophila brain, such as small groups of neurons or glia, defined subcomponents of the brain's axon scaffold, or pre- and postsynaptic structures of neurons. Thus, antibody probes that recognize defined tissues, cells, or subcellular structures like axons or synaptic terminals can be used as markers to identify and analyze phenotypes in embryos and larvae. Several antibodies, combined with different labels can be used concurrently to examine protein colocalization. This protocol spans over 3-4 days.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-4939-9732-9_5DOI Listing

Publication Analysis

Top Keywords

embryonic larval
8
drosophila brain
8
immunostaining embryonic
4
larval drosophila
4
brain
4
brain immunostaining
4
immunostaining visualize
4
visualize spatiotemporal
4
spatiotemporal expression
4
expression pattern
4

Similar Publications

Efficacy of plant extracts against the immature stage of house fly, Musca domestica (Diptera: Muscidae).

Trop Biomed

December 2024

Department of Entomology and Plant Pathology, Khon Kaen University, Thailand Mittapap Road, Khon Kaen, Khon Kaen, 40002, Thailand.

This research aimed to find indigenous plants and suitable solvents to extract substances with the capacity to suppress the immature stages of house fly populations in animal farms and urban areas. Seven native Thai plants were tested: Alstonia scholaris (L.) R.

View Article and Find Full Text PDF

Background: High-throughput behavioral analysis is important for drug discovery, toxicological studies, and the modeling of neurological disorders such as autism and epilepsy. Zebrafish embryos and larvae are ideal for such applications because they are spawned in large clutches, develop rapidly, feature a relatively simple nervous system, and have orthologs to many human disease genes. However, existing software for video-based behavioral analysis can be incompatible with recordings that contain dynamic backgrounds or foreign objects, lack support for multiwell formats, require expensive hardware, and/or demand considerable programming expertise.

View Article and Find Full Text PDF

Methylene blue (MB) is an antifungal agent widely used during critical stages of zebrafish development. Most guidelines recommend 0.00005% or 0.

View Article and Find Full Text PDF

The present, brief review paper summarizes previous studies on a new interpretation of the presence and absence of regeneration in invertebrates and vertebrates. Broad regeneration is considered exclusive of aquatic or amphibious animals with larval stages and metamorphosis, where also a patterning process is activated for whole-body regeneration or for epimorphosis. In contrast, terrestrial invertebrates and vertebrates can only repair injury or the loss of body parts through a variable "recovery healing" of tissues, regengrow or scarring.

View Article and Find Full Text PDF

Background: Strongyle nematodes pose a major challenge in veterinary parasitology, causing significant economic losses in livestock due to resistance to conventional treatments. Current anthelmintics, like Ivermectin, often encounter resistance issues. This study aims to address these gaps by synthesizing Carbon Quantum Dots (CQDs) and Copper-Doped CQDs (Cu@CQDs) using glucose extract, and evaluating their nematicidal properties against strongyles in vitro.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!