The choice of tree species used in production forests matters for biodiversity and ecosystem services. In Sweden, damage to young production forests by large browsing herbivores is helping to drive a development where sites traditionally regenerated with Scots pine (Pinus sylvestris) are instead being regenerated with Norway spruce (Picea abies). We provide a condensed synthesis of the available evidence regarding the likely resultant implications for forest biodiversity and ecosystem services from this change in tree species. Apart from some benefits (e.g. reduced stand-level browsing damage), we identified a range of negative outcomes for biodiversity, production, esthetic and recreational values, as well as increased stand vulnerability to storm, frost, and drought damage, and potentially higher risks of pest and pathogen outbreak. Our results are directly relevant to forest owners and policy-makers seeking information regarding the uncertainties, risks, and trade-offs likely to result from changing the tree species in production forests.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7067718 | PMC |
http://dx.doi.org/10.1007/s13280-019-01259-x | DOI Listing |
Sci Rep
December 2024
College of Life sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai'an, 271016, China.
The mitochondrial whole genome of Phellinus igniarius was sequenced with the objective of examining the evolutionary relationships amongst related species. The entire mitochondrial genome was assembled using Illumina sequencing technology. The structural annotation and bioinformatics analysis were performed.
View Article and Find Full Text PDFSci Rep
December 2024
School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, 223003, China.
Cinnamomum camphora, a key multifunctional tree species, primarily serves in landscaping. Leaf color is crucial for its ornamental appeal, undergoing a transformation to red that enhances the ornamental value of C. camphora.
View Article and Find Full Text PDFSci Rep
December 2024
Guangxi Subtropical Crops Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530001, China.
This study evaluates the growth, survival pressures, and community dynamics of Barringtonia racemosa (L.) Spreng. populations in Jiulong Mountain and Suixi County, Guangdong Province.
View Article and Find Full Text PDFJ Adv Res
December 2024
Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin 150040, China; College of Life Science, Northeast Forestry University, Harbin 150040, China. Electronic address:
Introduction: Lonicera caerulea L. (blue honeysuckle) is a noteworthy fleshy-fruited tree and a prominent medicinal plant, which possesses notable characteristics such as exceptional resilience to winter conditions and early maturation, and the richest source of functional anthocyanins, particularly cyanidin-3-glucoside. The molecular mechanisms responsible for its freezing tolerance and anthocyanin biosynthesis remain largely unknown.
View Article and Find Full Text PDFJ Pharm Sci
December 2024
Certara UK Ltd., Certara Predictive Technologies Division, 1 Concourse Way, Level 2-Acero, Sheffield, S1 2BJ, United Kingdom. Electronic address:
Predicting steady-state volume of distribution (V) is a key component of pharmacokinetic predictions and often guided using preclinical data. However, when bottom-up prediction from physiologically-based pharmacokinetic (PBPK) models and observed V misalign in preclinical species, or predicted V from different models varies significantly, no consensus exists for selecting models or preclinical species to improve the prediction. Through systematic analysis of V prediction across rat, dog, monkey, and human, using common methods, a practical strategy for predicting human V, with or without integration of preclinical PK information is warranted.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!