Aim: To evaluate the anthelmintic activity of Anacardium occidentale shell, Illicium verum fruit, and Artocarpus heterophyllus seed to substantiate their traditional use against helminths.
Materials And Methods: In vitro anthelmintic activity of hydroalcoholic extracts of three plants was evaluated against eggs, infective larvae (L3), adult, and lactate dehydrogenase (LDH) of Haemonchus contortus of naturally infected sheep.
Results: The three extracts exhibited significant (P < 0.001) dose-dependent anthelmintic responses by inhibiting egg hatching and causing paralysis of larvae and mortality of worms. The extracts were most effective on egg and adult stage of H. contortus than on L3 stage at a higher concentration of 6 mg/mL. Anacardium occidentale shell exhibited maximum activity with 100% paralysis of L3 larvae. Probit analysis revealed that the extracts of A. Occidentale shell induced 50% egg hatch inhibition (LD50 = 0.0255 mg/mL), larval paralysis (LD50 = 0.196 mg/mL), and adult worm mortality (LD50 = 1.0365 mg/mL) at a lower concentration (LD50) compared with those of I. verum fruit and A. heterophyllus seed extracts. Further, all extracts significantly (P < 0.01) inhibited the LDH activity catalyzing the oxidation of lactate in adult H. contortus, with maximum level of inhibition caused by A. occidentale shell extract.
Conclusion: Phytochemical screening of the extracts revealed the presence of alkaloids, flavonoids, tannins, saponins, and amino acids that could be responsible for the anthelmintic effects noticed. The results warrant further in vivo evaluation of these plants for potential use as anthelmintic agents.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2478/s11686-019-00116-x | DOI Listing |
Sci Rep
January 2025
Open Innovation Laboratory for Food and Medicinal Resource Engineering (FoodMed-OIL), National Institute of Advanced Science and Technology (AIST), Tsukuba, Japan.
Obesity, a major risk factor for various metabolic diseases, often results in dysfunctional white adipose tissue and altered adipogenesis leading to ectopic fat accumulation, inflammation, and insulin resistance. On the other hand, cashew (Anacardium occidentale L.) nut worldwide consumption and production is increasing steadily, which augments the mass of byproducts to be discarded.
View Article and Find Full Text PDFFoods
December 2024
Embrapa Alimentos e Territórios, Maceió 57020-050, AL, Brazil.
The growing focus on sustainable use of natural resources has brought attention to cashew nut shell liquid (CNSL), a by-product rich in anacardic acids (AAs) with potential applications in diabetes treatment. In this study, three different AAs from CNSL, monoene (15:1, AAn1), diene (15:2, AAn2), and triene (15:3, AAn3), and a mixture of the three (mix) were evaluated as -glucosidase inhibitors. The samples were characterized by combining 1D and 2D NMR spectroscopy, along with ESI-MS.
View Article and Find Full Text PDFBiol Pharm Bull
December 2024
Faculty of Pharmaceutical Sciences, Tokushima Bunri University.
Anacardic acid (AA) was first detected in the shells of cashew nuts, Anacardium occidentale, and is known to possess inhibitory activity against acetyltransferases. Recently, several anacardic acid derivatives (AAds) were isolated from the wild fungus, Tyromyces fissilis, which has been reported as xanthine oxidase inhibitors. In the present study, we investigated whether nine AAds function as acetyltransferase inhibitors.
View Article and Find Full Text PDFMar Pollut Bull
February 2024
LaTIM (INSERM UMR 1101) Université de Bretagne Occidentale, 22, Avenue C. Desmoulins, 29238 Brest Cedex 3, France.
Rare Earth Elements (REE) and several trace elements abundances in mussel's shells collected along the St. Lawrence River, the Estuary, and the Gulf of St. Lawrence (EGSL) reveal coherent chemical variations, with a sharp contrast between freshwater and seawater bivalves.
View Article and Find Full Text PDFHeliyon
August 2023
Product and Processes Design Group, Department of Chemical and Food Engineering, Universidad de los Andes, Carrera 1 No. 18A-10, Bogotá D.C. 111711, Colombia.
Sustainable management of non-edible agricultural residues of cashew nut production is a concern in Colombia. Therefore, this study aimed to study the fatty acid content of a pyrolytic liquid obtained from cashew nut shells (CNSs) from the Vichada region in Colombia. Transesterification of pyrolytic liquid was conducted to obtain biodiesel at the micro-scale as the first approach for this valorization route.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!