Background: Fracture of an implant is a quite rare event but represents an important opportunity to evaluate the peri-implant bone tissue response to implant overload in human beings. This study aimed to evaluate bone tissue around three fractured titanium implants retrieved from a human maxilla, by histomorphometric and birefringence analyses.
Case Report: For this, the implants and the surrounding bone were removed after having been united to a tooth in function for 45 months, by a 4-mm internal diameter trephine bur, following an undecalcified section was obtained. The results showed a rate of 77.3% of bone-to-implant contact (BIC) and 80.3% of bone area filling within the limits of the implant threads. Under circularly polarized light microscopy investigation, the amount of the transverse collagen fibers was of 48.11%, and the amount of the longitudinal collagen fibers was of 51.89%.
Conclusion: Within the limitation of this study, the possible cause of the implant fracture could be the association of overload, inadequate implant diameter, and fragile internal hexagon connection.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6760459 | PMC |
http://dx.doi.org/10.1186/s40729-019-0184-4 | DOI Listing |
Adv Healthc Mater
January 2025
State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
Immune-mediated bone regeneration driven by bone biomaterials offers a therapeutic strategy for repairing bone defects. Among 2D nanomaterials, TiCT MXenes have garnered substantial attention for their potential in tissue regeneration. This investigation concentrates on the role of MXene nanocomposites in modulating the immune microenvironment within bone defects to facilitate bone tissue restoration.
View Article and Find Full Text PDFFolia Morphol (Warsz)
January 2025
Department of Orthopedics and Traumatology, University Hospital Queen Giovanna-ISUL, Medical University of Sofia, Sofia, Bulgaria.
Variations in the development of carpal bones are uncommon, with the scaphoid bone typically forming from the fusion of the os centrale carpi and the radial chondrification center during embryogenesis. A bipartite scaphoid is a rare congenital disorder that occurs when these ossification centers fail to fuse, with a prevalence ranging from 0.1% to 0.
View Article and Find Full Text PDFACS Appl Bio Mater
January 2025
Advanced Magnetic Materials Research Center, School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, North Kargar Street, Tehran 11155-4563, Iran.
Although 3D printing is becoming a dominant technique for scaffold preparation in bone tissue engineering (TE), developing hydrogel-based ink compositions with bioactive and self-healing properties remains a challenge. This research focuses on developing a bone scaffold based on a composite hydrogel, which maintains its self-healing properties after incorporating bioactive glass and is 3D-printable. The plain hydrogel ink was synthesized using natural polymers of 1 wt % N-carboxyethyl chitosan, 2 wt % hyaluronic acid aldehyde, 0.
View Article and Find Full Text PDFJ Biomed Mater Res A
January 2025
Faculty of Materials Science and Engineering, Warsaw University of Technology, Warsaw, Poland.
Bone tissue regeneration can be affected by various architectonical features of 3D porous scaffold, for example, pore size and shape, strut size, curvature, or porosity. However, the design of additively manufactured structures studied so far was based on uniform geometrical figures and unit cell structures, which often do not resemble the natural architecture of cancellous bone. Therefore, the aim of this study was to investigate the effect of architectonical features of additively manufactured (aka 3D printed) titanium scaffolds designed based on microtomographic scans of fragments of human femurs of individuals of different ages on in vitro response of human bone-derived mesenchymal stem cells (hMSC).
View Article and Find Full Text PDFJ Tissue Eng
January 2025
Department of Sports Medicine and Joint Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China.
Bone marrow stimulation treatment by bone marrow stromal cells (BMSCs) released from the bone medullary cavity and differentiated into cartilage via microfracture surgery is a frequently employed technique for treating articular cartilage injuries, yet the treatment presents a main drawback of poor cartilage regeneration in the elderly. Prior research indicated that aging could decrease the stemness capacity of BMSCs, thus we made a hypothesis that increasing old BMSCs (OBMSCs) stemness might improve the results of microfracture in the elderly. First, we investigated the correlation between microfracture outcomes and BMSCs stemness using clinical data and animal experiments.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!