Fermentation of chemicals from lignocellulose hydrolysate is an effective way to alleviate environmental and energy problems. However, fermentation inhibitors in hydrolysate and weak inhibitor tolerance of microorganisms limit its development. In this study, atmospheric and room temperature plasma mutation technology was utilized to generate mutant strains of Enterobacter cloacae and screen for mutants with high inhibitor tolerance to acid hydrolysate of corncobs. A highly inhibitor-tolerant strain, Enterobacter cloacae M22, was obtained after fermentation with non-detoxified hydrolysate, and this strain produced 24.32 g/L 2,3-butanediol and 14.93 g/L organic acids. Compared with that of the wild-type strain, inhibitor tolerance was enhanced twofold with M22, resulting in improvement of 2,3-butanediol and organic acid production by 114% and 90%, respectively. This work presents an efficient method to screen for highly inhibitor-tolerant strains and evidence of a novel strain that can produce 2,3-butanediol and organic acids using non-detoxified acid hydrolysate of corncobs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6760432PMC
http://dx.doi.org/10.1186/s13568-019-0879-1DOI Listing

Publication Analysis

Top Keywords

highly inhibitor-tolerant
12
acid hydrolysate
12
inhibitor tolerance
12
organic acid
8
acid production
8
enterobacter cloacae
8
hydrolysate corncobs
8
organic acids
8
23-butanediol organic
8
hydrolysate
6

Similar Publications

Ethanol production at high temperatures using lignocellulosic biomass as feedstock requires a highly efficient thermo and lignocellulosic inhibitor-tolerant ethanologenic yeast. In this study, sixty-three yeast isolates were obtained from tropical acidic fruits using a selective acidified medium containing 80 mM glacial acetic acid. Twenty-nine of the yeast isolates exhibited significant thermo and acetic acid-tolerant fermentative abilities.

View Article and Find Full Text PDF

Development of optimal steam explosion pretreatment and highly effective cell factory for bioconversion of grain vinegar residue to butanol.

Biotechnol Biofuels

June 2020

State Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457 China.

Background: The industrial vinegar residue (VR) from solid-state fermentation, mainly cereals and their bran, will be a potential feedstock for future biofuels because of their low cost and easy availability. However, utilization of VR for butanol production has not been as much optimized as other sources of lignocellulose, which mainly stem from two key elements: (i) high biomass recalcitrance to enzymatic sugar release; (ii) lacking of suitable industrial biobutanol production strain. Though steam explosion has been proved effective for bio-refinery, few studies report SE for VR pretreatment.

View Article and Find Full Text PDF

Fermentation of chemicals from lignocellulose hydrolysate is an effective way to alleviate environmental and energy problems. However, fermentation inhibitors in hydrolysate and weak inhibitor tolerance of microorganisms limit its development. In this study, atmospheric and room temperature plasma mutation technology was utilized to generate mutant strains of Enterobacter cloacae and screen for mutants with high inhibitor tolerance to acid hydrolysate of corncobs.

View Article and Find Full Text PDF

Background: The production of bioethanol from lignocellulose hydrolysates requires a robust, D-xylose-fermenting and inhibitor-tolerant microorganism as catalyst. The purpose of the present work was to develop such a strain from a prime industrial yeast strain, Ethanol Red, used for bioethanol production.

Results: An expression cassette containing 13 genes including Clostridium phytofermentans XylA, encoding D-xylose isomerase (XI), and enzymes of the pentose phosphate pathway was inserted in two copies in the genome of Ethanol Red.

View Article and Find Full Text PDF

A protocol for direct and rapid multiplex PCR amplification on forensically relevant samples.

Forensic Sci Int Genet

March 2012

National crime squad, Hoofdstraat 54, 3972 LB Driebergen, The Netherlands.

Forensic DNA typing involves a multi-step workflow. Steps include DNA isolation, quantification, amplification of a set of short tandem repeat (STR) markers, separation of polymerase chain reaction (PCR) products by capillary electrophoresis (CE) and DNA profile analysis and interpretation. With that, the process takes around 10-12h.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!